A PRIMAL DUAL INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR-PROGRAMMING

被引:178
作者
KOJIMA, M
MEGIDDO, N
MIZUNO, S
机构
[1] IBM CORP,ALMADEN RES CTR,SAN JOSE,CA 95114
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[3] INST STAT MATH,TOKYO,JAPAN
关键词
INFEASIBLE-INTERIOR-POINT ALGORITHM; INTERIOR-POINT ALGORITHM; PRIMAL DUAL ALGORITHM; LINEAR PROGRAM; LARGE STEP; GLOBAL CONVERGENCE;
D O I
10.1007/BF01582151
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
As in many primal-dual interior-point algorithms, a primal-dual infeasible-interior-point algorithm chooses a new point along the Newton direction towards a point on the central trajectory, but it does not confine the iterates within the feasible region. This paper proposes a step length rule with which the algorithm takes large distinct step lengths in the primal and dual spaces and enjoys the global convergence.
引用
收藏
页码:263 / 280
页数:18
相关论文
共 26 条
[1]  
CARPENTER TJ, IN PRESS SIAM J OPTI
[2]  
CHOI IC, 1990, ORSA J COMPUTING, V2, P304
[3]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[4]   A LITTLE THEOREM OF THE BIG-MU IN INTERIOR-POINT ALGORITHMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1993, 59 (03) :361-375
[5]   HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MEGIDDO, N ;
NOMA, T .
MATHEMATICS OF OPERATIONS RESEARCH, 1991, 16 (04) :754-774
[6]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26
[7]  
KOJIMA M, IN PRESS MATH OPERAT
[8]  
Kojima M., 1989, PROGR MATH PROGRAMMI, P29
[9]  
KOJIMA M, 1991, LECTURE NOTES COMPUT, V538
[10]   ON SOME EFFICIENT INTERIOR POINT METHODS FOR NONLINEAR CONVEX-PROGRAMMING [J].
KORTANEK, KO ;
POTRA, F ;
YE, YY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 152 :169-189