AN INTEGRABLE 3-PARTICLE SYSTEM

被引:3
作者
RANADA, MF
机构
[1] Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza
关键词
D O I
10.1063/1.530585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A study of the existence of some integrable systems with nonlinear constants of motion is presented using the approach of the theory of generalized (dynamical or hidden) symmetries. Two Lagrangians are considered, both obtained by modifying the Toda Lagrangian. First a two-particle system is studied and then the results are generalized to a three-particle system. It is shown that in both cases the Lagrangians possess nonlinear constants of motion in involution and, thus, they are integrable.
引用
收藏
页码:1219 / 1232
页数:14
相关论文
共 27 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   INTEGRABILITY OF TODA LATTICE BY GENERALIZED VARIATIONAL SYMMETRY APPROACH [J].
ANNAMALAI, A ;
TAMIZHMANI, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (05) :1876-1883
[3]  
[Anonymous], 1989, CHAOS INTEGRABILITY
[4]   CONTACT SYMMETRIES AND INTEGRABLE NON-LINEAR DYNAMICAL-SYSTEMS [J].
CERVERO, JM ;
VILLARROEL, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6203-6209
[5]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772
[6]   INTEGRALS OF MOTION FOR TODA SYSTEMS WITH UNEQUAL MASSES [J].
DORIZZI, B ;
GRAMMATICOS, B ;
PADJEN, R ;
PAPAGEORGIOU, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (07) :2200-2211
[7]   A NEW CLASS OF INTEGRABLE SYSTEMS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) :2282-2288
[8]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[9]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[10]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+