EXPONENTIAL CONVERGENCE OF THE 1ST EIGENVALUE DIVIDED BY THE DIMENSION, FOR CERTAIN SEQUENCES OF SCHRODINGER-OPERATORS

被引:0
作者
SJOSTRAND, J [1 ]
机构
[1] UNIV PARIS 11,DEPT MATH,F-91405 ORSAY,FRANCE
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider certain sequences of Schrodinger operators -h2DELTA + V(m)(x), x is-an-element-of R(m), m = 1, 2, ... Our assumptions imply that V(m) is strictly convex. If mu(m, h) denotes the lowest eigenvalue, we study the exponential convergence of mu(m, h)/m when m tends to infinity.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 6 条
[1]  
HELFFER B, 1991, SEMICLASSICAL EXPANS, V1
[2]  
KAC M, 1966, MATH MECHANISMS PHAS
[3]  
KAC M, 1962, STUDIES MATH ANAL RE, P165
[4]  
Singer I. M., 1985, ANN SCUOLA NORM 4 S, V12, P319
[5]  
SJOSTRAND J, 1991, POTENTIAL WELLS HIGH, V2
[6]  
SJOSTRAND J, 1991, POTENTIAL WELLS HIGH