JULIA SETS ARE UNIFORMLY PERFECT

被引:38
作者
MANE, R [1 ]
DAROCHA, LF [1 ]
机构
[1] UNIV FED RIO GRANDE SUL,INST MATEMAT,BR-91500 PORTO ALEGRE,RS,BRAZIL
关键词
D O I
10.2307/2159321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that Julia sets are uniformly perfect in the sense of Pommerenke (Arch. Math. 32 (1979), 192-199). This implies that their linear density of logarithmic capacity is strictly positive, thus implying that Julia sets are regular in the sense of Dirichlet. Using this we obtain a formula for the entropy of invariant harmonic measures on Julia sets. As a corollary we give a very short proof of Lopes converse to Brolin's theorem.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 7 条
[1]   INVRAIANT SETS UNDER ITERATION OF RATIONAL FUNCTIONS [J].
BROLIN, H .
ARKIV FOR MATEMATIK, 1965, 6 (02) :103-&
[2]  
FREIRE A, 1983, B SOC BRASIL MAT, V14, P45
[3]  
LJUBICH MJ, 1983, ERGOD THEOR DYN SYST, V3, P351
[4]  
Mane R., 1983, BOL SOC BRAS MAT, V14, P27
[5]   UNIFORMLY PERFECT SETS AND THE POINCARE METRIC [J].
POMMERENKE, C .
ARCHIV DER MATHEMATIK, 1979, 32 (02) :192-199
[6]  
Pommerenke Ch., 1984, ANALYSIS-UK, V4, P299
[7]  
[No title captured]