REGULARITY OF INFINITELY DIVISIBLE PROCESSES

被引:26
作者
TALAGRAND, M [1 ]
机构
[1] OHIO STATE UNIV, DEPT MATH, COLUMBUS, OH 43210 USA
关键词
SAMPLE BOUNDEDNESS; INFINITELY DIVISIBLE; LEVY MEASURE; ROSINSKI REPRESENTATION; MAJORIZING MEASURE; BERNOULLI PROCESS; CONCENTRATION OF MEASURE; BRACKETING;
D O I
10.1214/aop/1176989409
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop new tools that enable us to extend the majorizing measure lower bound to a large class of infinitely divisible processes. We show (in a rigorous sense) that the complexity of these processes is dominated by the complexity of the positive infinitely divisible processes.
引用
收藏
页码:362 / 432
页数:71
相关论文
共 32 条
[1]  
ANDERSON NT, 1987, T AM MATH SOC, V309, P1
[2]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[3]   ENTROPY NUMBERS, S-NUMBERS, AND EIGENVALUE PROBLEMS [J].
CARL, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :290-306
[4]  
Dudley RM, 1967, J FUNCT ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1
[5]  
FERNIQUE X, 1975, LECT NOTES MATH, V480
[6]  
HAHN M, 1992, UNPUB LOG PROBABILIT
[7]  
Kahane J.P., 1985, SOME RANDOM SERIES F
[8]   A SLEPIAN-GORDON INEQUALITY ON GAUSSIAN-PROCESSES [J].
KAHANE, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1986, 55 (01) :109-110
[9]   COMPARISON-THEOREMS, RANDOM GEOMETRY AND SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
LEDOUX, M ;
TALAGRAND, M .
ANNALS OF PROBABILITY, 1989, 17 (02) :596-631
[10]  
LEDOUX M, 1992, IN PRESS ISOPERIMETR