A Causal Inference Approach to Network Meta-Analysis

被引:12
作者
Schnitzer, Mireille E. [1 ]
Steele, Russell J. [2 ]
Bally, Michele [3 ]
Shrier, Ian [4 ]
机构
[1] Univ Montreal, Fac Pharm, Montreal, PQ, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
[3] Ctr Hosp Univ Montreal, Ctr Rech, Dept Pharm, Montreal, PQ, Canada
[4] McGill Univ, Jewish Gen Hosp, Lady Davis Inst Med Res, Ctr Clin Epidemiol, 3755 Cote St Catherine Rd, Montreal, PQ H3T 1E2, Canada
关键词
g-formula; identifiability; network meta-analysis; nonparametric structural equation; propensity score; systematic review; TMLE;
D O I
10.1515/jci-2016-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
While standard meta-analysis pools the results from randomized trials that compare two treatments, network meta-analysis aggregates the results of randomized trials comparing a wider variety of treatment options. However, it is unclear whether the aggregation of effect estimates across heterogeneous populations will be consistent for a meaningful parameter when not all treatments are evaluated on each population. Drawing from counterfactual theory and the causal inference framework, we define the population of interest in a network meta-analysis and define the target parameter under a series of nonparametric structural assumptions. This allows us to determine the requirements for identifiability of this parameter, enabling a description of the conditions under which network meta-analysis is appropriate and when it might mislead decision making. We then adapt several modeling strategies from the causal inference literature to obtain consistent estimation of the intervention-specific mean outcome and model-independent contrasts between treatments. Finally, we perform a reanalysis of a systematic review to compare the efficacy of antibiotics on suspected or confirmed methicillin-resistant Staphylococcus aureus in hospitalized patients.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Network meta-analysis: an introduction for pharmacists
    Xu, Yina
    Amiche, Mohamed Amine
    Tadrous, Mina
    INTERNATIONAL JOURNAL OF CLINICAL PHARMACY, 2018, 40 (05) : 942 - 947
  • [2] Efficient network meta-analysis: A confidence distribution approach
    Yang, Guang
    Liu, Dungang
    Liu, Regina Y.
    Xie, Minge
    Hoaglin, David C.
    STATISTICAL METHODOLOGY, 2014, 20 : 105 - 125
  • [3] Basic concepts for network meta-analysis
    Catala-Lopez, Ferran
    Tobias, Aurelio
    Roque, Marta
    ATENCION PRIMARIA, 2014, 46 (10): : 573 - 581
  • [4] Network meta-analysis: an introduction for pharmacists
    Yina Xu
    Mohamed Amine Amiche
    Mina Tadrous
    International Journal of Clinical Pharmacy, 2018, 40 : 942 - 947
  • [5] Network Meta-Analysis of Onychomycosis Treatments
    Gupta, Aditya K.
    Daigle, Deanne
    Foley, Kelly A.
    SKIN APPENDAGE DISORDERS, 2015, 1 (02): : 74 - 81
  • [6] Network meta-analysis
    White, Ian R.
    STATA JOURNAL, 2015, 15 (04) : 951 - 985
  • [7] Causal Inference for Meta-Analysis and Multi-Level Data Structures, with Application to Randomized Studies of Vioxx
    Sobel, Michael
    Madigan, David
    Wang, Wei
    PSYCHOMETRIKA, 2017, 82 (02) : 459 - 474
  • [8] Kenward-Roger-type corrections for inference methods of network meta-analysis and meta-regression
    Noma, Hisashi
    Hamura, Yasuyuki
    Gosho, Masahiko
    Furukawa, Toshi A.
    RESEARCH SYNTHESIS METHODS, 2023, 14 (05) : 731 - 741
  • [9] Oral antifungal therapies for toenail onychomycosis: a systematic review with network meta-analysis toenail mycosis: network meta-analysis
    Favero, Maria L. D.
    Bonetti, Aline F.
    Domingos, Eric L.
    Tonin, Fernanda S.
    Pontarolo, Roberto
    JOURNAL OF DERMATOLOGICAL TREATMENT, 2022, 33 (01) : 121 - 130
  • [10] Permutation inference methods for multivariate meta-analysis
    Noma, Hisashi
    Nagashima, Kengo
    Furukawa, Toshi A.
    BIOMETRICS, 2020, 76 (01) : 337 - 347