DENSITY OF EIGENVALUES OF RANDOM BAND MATRICES

被引:27
作者
KUS, M [1 ]
LEWENSTEIN, M [1 ]
HAAKE, F [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH, FACHBEREICH PHYS, W-4300 ESSEN 1, GERMANY
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 05期
关键词
D O I
10.1103/PhysRevA.44.2800
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using methods of supersymmetry, we calculate the distribution of eigenvalues for random Hermitian band matrices. We show that, if the bandwidth b increases with the dimension of matrices N as b is-proportional-to N-beta with some beta > 0, the resulting eigenvalue distribution is given by Wigner's semicircle law as in the case of full random matrices of the Gaussian unitary ensemble.
引用
收藏
页码:2800 / 2808
页数:9
相关论文
共 25 条
[1]   SEMICLASSICAL LEVEL SPACINGS WHEN REGULAR AND CHAOTIC ORBITS COEXIST [J].
BERRY, MV ;
ROBNIK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (12) :2413-2421
[2]  
BERRY MV, 1977, P ROY SOC LOND A MAT, V356, P357
[3]  
BREZIN E, 1985, LECT NOTES PHYS, V216, P115
[4]   SCALING BEHAVIOR OF LOCALIZATION IN QUANTUM CHAOS [J].
CASATI, G ;
GUARNERI, I ;
IZRAILEV, F ;
SCHARF, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (01) :5-8
[5]  
CASATI G, UNPUB
[6]   EIGENVALUE STATISTICS OF DISTORTED RANDOM MATRICES [J].
CHEON, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :529-532
[7]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[8]   CHAOS, QUANTUM RECURRENCES, AND ANDERSON LOCALIZATION [J].
FISHMAN, S ;
GREMPEL, DR ;
PRANGE, RE .
PHYSICAL REVIEW LETTERS, 1982, 49 (08) :509-512
[9]   QUANTUM DYNAMICS OF A NONINTEGRABLE SYSTEM [J].
GREMPEL, DR ;
PRANGE, RE ;
FISHMAN, S .
PHYSICAL REVIEW A, 1984, 29 (04) :1639-1647
[10]  
GUHR T, 1989, THESIS U HEIDELBERG