LP NONUNIFORM BOUNDS FOR ASYMPTOTIC NORMALITY OF LINEAR RANK STATISTICS

被引:0
作者
WU, TJ
机构
[1] Department of Mathematics, University of Houston, Houston
关键词
L[!sub]p[!/sub] nonuniform central limit bounds; simple linear rank statistics;
D O I
10.1016/0167-7152(90)90147-Y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An Lp, 1 ≤ p ≤ ∞, nonuniform central limit order bound O(N- 1 2) for simple linear rank statistics is obtained. The theorem is proved for a wide class of scores including the van der Waerden scores and the Wilcoxon scores. It extends and improves some known results obtained in this direction. © 1990.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 15 条
[1]   ASYMPTOTIC EXPANSIONS FOR POWER OF DISTRIBUTION FREE TESTS IN ONE-SAMPLE PROBLEM [J].
ALBERS, W ;
BICKEL, PJ ;
VANZWET, WR .
ANNALS OF STATISTICS, 1976, 4 (01) :108-156
[2]  
BHATTACHARYA R. N., 1976, NORMAL APPROXIMATION
[3]  
BOLTHAUSEN E, 1984, Z WAHRSCHEINLICHKEIT, V66, P379, DOI 10.1007/BF00533704
[4]   AN EDGEWORTH EXPANSION FOR SIMPLE LINEAR RANK STATISTICS UNDER THE NULL-HYPOTHESIS [J].
DOES, RJMM .
ANNALS OF STATISTICS, 1983, 11 (02) :607-624
[5]   BERRY-ESSEEN THEOREMS FOR SIMPLE LINEAR RANK STATISTICS UNDER THE NULL-HYPOTHESIS [J].
DOES, RJMM .
ANNALS OF PROBABILITY, 1982, 10 (04) :982-991
[6]   L1 RATES OF CONVERGENCE FOR LINEAR RANK STATISTICS [J].
ERICKSON, RV ;
KOUL, HL .
ANNALS OF STATISTICS, 1976, 4 (04) :771-774
[7]   AN LP BOUND FOR REMAINDER IN A COMBINATORIAL CENTRAL LIMIT-THEOREM [J].
HO, ST ;
CHEN, LHY .
ANNALS OF PROBABILITY, 1978, 6 (02) :231-249
[8]   RATE OF CONVERGENCE OF SIMPLE LINEAR RANK STATISTICS UNDER HYPOTHESIS AND ALTERNATIVES [J].
HUSKOVA, M .
ANNALS OF STATISTICS, 1977, 5 (04) :658-670
[9]   CRAMER TYPE LARGE DEVIATIONS FOR SIMPLE LINEAR RANK STATISTICS [J].
KALLENBERG, WCM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 60 (03) :403-409
[10]  
Petrov VV, 1975, SUMS INDEPENDENT RAN