EXISTENCE AND STABILITY RESULTS FOR NONLINEAR IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSES

被引:0
作者
Benchohra, Mouffak [1 ,2 ]
Bouriah, Soufyane [1 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Math Lab, POB 89, Sidi Bel Abbes 22000, Algeria
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2016年 / 69卷
关键词
Boundary value problem; Caputo's fractional derivative; implicit fractional differential equations; fractional integral; existence; stability; fixed point; impulses;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence and uniqueness of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with impulse and Caputo's fractional derivatives, the stability of this class of problems is considered, as well. The arguments are based upon the Banach contraction principle and the Schaefer's fixed point theorem. We present two examples to show the applicability of our results.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 31 条
[1]  
Abbas S., 2015, MATH RES DEV SERIES
[2]   Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions [J].
Agarwal, Ravi P. ;
Ahmad, Bashir .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1200-1214
[3]   EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER [J].
Ahmad, Bashir ;
Nieto, Juan J. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :981-993
[4]  
Bainov D.D, 1997, J APPL MATH STOCH AN, V10, P89
[5]  
Baleanu D., 2010, NEW TRENDS NANOTECHN
[6]  
Baleanu D., 2012, SERIES COMPLEXITY NO, V3
[7]  
BENCHOHRA M., 2013, COMMUN APPL ANAL, V17, P471
[8]  
Benchohra M., 2014, NONLINEAR ANAL FORUM, V19, P27
[9]  
Benchohra M., 2006, CONT MATH APPL, V2
[10]  
Benchohra M., 2014, ROM J MATH COMPUT SC, V4, P60