THE OCLP FAMILY OF TRIPLY PERIODIC MINIMAL-SURFACES

被引:0
|
作者
CVIJOVIC, D
KLINOWSKI, J
机构
来源
JOURNAL DE PHYSIQUE I | 1993年 / 3卷 / 04期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
CLP surfaces with orthorhombic distortion (oCLP for short) are a family of two-parameter triply periodic embedded minimal surfaces. We show that they correspond to the Weierstrass function of the form [GRAPHICS] where A and B are free parameters with - 2 < A, B < 2 and A > B, tau is complex with \tau\ less-than-or-equal-to 1 and kappa real and depends on A and B. When B = - A, the oCLP family reduces to the one-parameter CLP family with tetragonal symmetry. The Enneper-Weierstrass representation of oCLP surfaces involves pseudo-hyperelliptic integrals which can be reduced to elliptic integrals. We derive parametric equations for oCLP surfaces in terms of incomplete elliptic integrals F (phi, k) alone. These equations completely avoid integration of the Weierstrass function, thus making the use of the Enneper-Weierstrass representation unnecessary in the computation of specific oCLP surfaces. We derive analytical expressions for the normalization factor and the edge-to-length ratios in terms of the free parameters. This solves the problem of finding the oCLP saddle surface inscribed in given a right tetragonal prism, crucial for the modelling of structural data using a specific surface, and enables straightforward physical applications. We have computed exactly the.coordinates of oCLP surfaces corresponding to several prescribed values of the edge-to-length ratio.
引用
收藏
页码:909 / 924
页数:16
相关论文
共 50 条
  • [41] INFINITE PERIODIC MINIMAL-SURFACES AND THEIR CRYSTALLOGRAPHY IN THE HYPERBOLIC PLANE
    SADOC, JF
    CHARVOLIN, J
    ACTA CRYSTALLOGRAPHICA SECTION A, 1989, 45 : 10 - 20
  • [42] MINIMAL-SURFACES
    CLIBORN, JH
    JORDAN, B
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04): : 376 - 376
  • [43] THE CRYSTALLOGRAPHY OF THE HYPERBOLIC PLANE AND INFINITE PERIODIC MINIMAL-SURFACES
    SADOC, JF
    CHARVOLIN, J
    JOURNAL DE PHYSIQUE, 1990, 51 (23): : C7319 - C7332
  • [44] Reflections concerning triply-periodic minimal surfaces
    Schoen, Alan H.
    INTERFACE FOCUS, 2012, 2 (05) : 658 - 668
  • [45] Triply periodic minimal and constant mean curvature surfaces
    Grosse-Brauckmann, Karsten
    INTERFACE FOCUS, 2012, 2 (05) : 582 - 588
  • [46] Polymer Structures with the Topology of Triply Periodic Minimal Surfaces
    V. Ya. Shevchenko
    M. M. Sychev
    A. E. Lapshin
    L. A. Lebedev
    A. A. Gruzdkov
    A. M. Glezer
    Glass Physics and Chemistry, 2017, 43 : 608 - 610
  • [47] A study on triply periodic minimal surfaces: A case study
    Patel, Aarya Hitesh
    Baxi, Neel Jignesh
    Gurrala, Pavan Kumar
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 7334 - 7340
  • [48] Tensorial Minkowski functionals of triply periodic minimal surfaces
    Mickel, Walter
    Schroeder-Turk, Gerd E.
    Mecke, Klaus
    INTERFACE FOCUS, 2012, 2 (05) : 623 - 633
  • [49] Design and Applications of Triply Periodic Minimal Surfaces: A Survey
    Yan X.
    Tian L.
    Peng H.
    Lyu L.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (03): : 329 - 340
  • [50] Polymer Structures with the Topology of Triply Periodic Minimal Surfaces
    Shevchenko, V. Ya.
    Sychev, M. M.
    Lapshin, A. E.
    Lebedev, L. A.
    Gruzdkov, A. A.
    Glezer, A. M.
    GLASS PHYSICS AND CHEMISTRY, 2017, 43 (06) : 608 - 610