THE OCLP FAMILY OF TRIPLY PERIODIC MINIMAL-SURFACES

被引:0
|
作者
CVIJOVIC, D
KLINOWSKI, J
机构
来源
JOURNAL DE PHYSIQUE I | 1993年 / 3卷 / 04期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
CLP surfaces with orthorhombic distortion (oCLP for short) are a family of two-parameter triply periodic embedded minimal surfaces. We show that they correspond to the Weierstrass function of the form [GRAPHICS] where A and B are free parameters with - 2 < A, B < 2 and A > B, tau is complex with \tau\ less-than-or-equal-to 1 and kappa real and depends on A and B. When B = - A, the oCLP family reduces to the one-parameter CLP family with tetragonal symmetry. The Enneper-Weierstrass representation of oCLP surfaces involves pseudo-hyperelliptic integrals which can be reduced to elliptic integrals. We derive parametric equations for oCLP surfaces in terms of incomplete elliptic integrals F (phi, k) alone. These equations completely avoid integration of the Weierstrass function, thus making the use of the Enneper-Weierstrass representation unnecessary in the computation of specific oCLP surfaces. We derive analytical expressions for the normalization factor and the edge-to-length ratios in terms of the free parameters. This solves the problem of finding the oCLP saddle surface inscribed in given a right tetragonal prism, crucial for the modelling of structural data using a specific surface, and enables straightforward physical applications. We have computed exactly the.coordinates of oCLP surfaces corresponding to several prescribed values of the edge-to-length ratio.
引用
收藏
页码:909 / 924
页数:16
相关论文
共 50 条
  • [31] THE GLOBAL THEORY OF DOUBLY PERIODIC MINIMAL-SURFACES
    MEEKS, WH
    ROSENBERG, H
    INVENTIONES MATHEMATICAE, 1989, 97 (02) : 351 - 379
  • [32] CONDITIONS OF SYMMETRY FOR PERIODIC MINIMAL-SURFACES OF EQUILIBRIUM
    KOCH, E
    FISCHER, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 178 (1-4): : 125 - 127
  • [33] A family of triply periodic Costa surfaces
    Batista, VR
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) : 347 - 370
  • [34] TRIPLY PERIODIC MINIMAL BALANCE SURFACES - A CORRECTION
    KOCH, E
    FISCHER, W
    ACTA CRYSTALLOGRAPHICA SECTION A, 1993, 49 : 209 - 210
  • [35] Continuous transitions of triply periodic minimal surfaces
    Tian, Lihao
    Sun, Bingteng
    Yan, Xin
    Sharf, Andrei
    Tu, Changhe
    Lu, Lin
    ADDITIVE MANUFACTURING, 2024, 84
  • [36] Fluid permeabilities of triply periodic minimal surfaces
    Jung, Y
    Torquato, S
    PHYSICAL REVIEW E, 2005, 72 (05)
  • [37] DESCRIPTION OF TRIPLY-PERIODIC MINIMAL SURFACES
    Fogden, Andrew
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C549 - C549
  • [39] INFINITE PERIODIC MINIMAL-SURFACES - A MODEL FOR BLUE PHASES
    DUBOISVIOLETTE, E
    PANSU, B
    PIERANSKI, P
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1990, 192 : 221 - 237
  • [40] THE GEOMETRY, TOPOLOGY, AND EXISTENCE OF DOUBLY PERIODIC MINIMAL-SURFACES
    MEEKS, WH
    ROSENBERG, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (14): : 605 - 609