A CHAIN RULE FOR MULTIVARIABLE RESULTANTS

被引:11
作者
CHENG, CCA
MCKAY, JH
WANG, SSS
机构
关键词
MULTIVARIABLE RESULTANT; COMMON ZEROS; GENERIC POLYNOMIALS; JACOBIAN CONJECTURE; CHAIN RULE; NULLSTELLENSATZ; DISCRIMINANT; ISOBARIC PROPERTY; INVARIANT;
D O I
10.2307/2160699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a chain rule for the multivariable resultant, which is similar to the familiar chain rule for the Jacobian matrix. Specifically, given two homogeneous polynomial maps K-n --> K-n for a commutative ring K, such that their composition is a homogeneous polynomial map, the resultant of the composition is the product of appropriate powers of resultants of the individual maps.
引用
收藏
页码:1037 / 1047
页数:11
相关论文
共 14 条
[1]  
Bourbaki N., 1998, ELEMENTS MATH
[2]  
CHARDIN M, 1990, THESIS U P M CURIE P
[3]  
CHENG CC, 1992, ABSTR AM MATH SOC, V13, P242
[4]  
DEBRUNO FF, 1876, RESUME LECONS FAITES
[5]   DISCRIMINANTS OF POLYNOMIALS IN MANY VARIABLES [J].
GELFAND, IM ;
ZELEVINSKII, AV ;
KAPRANOV, MM .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (01) :1-4
[6]   ON SOME RESULTANT IDENTITIES [J].
KRAVITSKY, N ;
WAKSMAN, Z .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 122 :3-21
[7]  
KUNZ E, 1985, EINFUHRUNG KOMMUTATI
[8]  
Macaulay F.S, 1916, CAMBRIDGE TRACTS MAT, V19
[9]  
Macaulay FS, 1903, P LOND MATH SOC, V35, P3
[10]  
MACAULAY FS, 1991, ARCH MATH, V56, P352