TIKHONOV REGULARISATION FOR NON-LINEAR ILL-POSED PROBLEMS - OPTIMAL CONVERGENCE-RATES AND FINITE-DIMENSIONAL APPROXIMATION

被引:103
作者
NEUBAUER, A
机构
关键词
D O I
10.1088/0266-5611/5/4/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:541 / 557
页数:17
相关论文
共 8 条
[1]  
COLONIUS F, 1986, J REINE ANGEW MATH, V370, P1
[2]  
COLONIUS F, 1989, IN PRESS APPL MATH O
[3]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[4]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[5]   IDENTIFICATION OF PARAMETERS IN DISTRIBUTED PARAMETER-SYSTEMS BY REGULARIZATION [J].
KRAVARIS, C ;
SEINFELD, JH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (02) :217-241
[6]   CONVERGENCE OF CONVEX SETS AND OF SOLUTIONS OF VARIATIONAL INEQUALITIES [J].
MOSCO, U .
ADVANCES IN MATHEMATICS, 1969, 3 (04) :510-&
[7]   WHEN DO SOBOLEV SPACES FORM A HILBERT SCALE [J].
NEUBAUER, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) :557-562
[8]   WELL POSEDNESS AND CONVERGENCE OF SOME REGULARISATION METHODS FOR NON-LINEAR ILL POSED PROBLEMS [J].
SEIDMAN, TI ;
VOGEL, CR .
INVERSE PROBLEMS, 1989, 5 (02) :227-238