GEOMETRIC METHODS FOR COMPUTING INVARIANT-MANIFOLDS

被引:21
作者
MOORE, G
机构
[1] Department of Mathematics, Imperial College, London, SW7 2BZ, Queen's Gate
关键词
D O I
10.1016/0168-9274(95)00037-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computational schemes for various types of one- and two-dimensional invariant manifold are considered. Emphasis is on the choice of parametrisation for the manifold and how this leads to different algorithms.
引用
收藏
页码:319 / 331
页数:13
相关论文
共 22 条
[2]  
Beyn WJ, 1990, IMA J NUMER ANAL, V9, P379
[3]  
BEYN WJ, 1991, ADV NUMERICAL ANAL, P175
[4]  
COHN H, 1980, CONFORMAL MAPPING RI
[5]   DIFFERENCE METHODS FOR BOUNDARY-VALUE PROBLEMS WITH A SINGULARITY OF 1ST KIND [J].
DE HOOG, FR ;
WEISS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (05) :775-813
[6]   AN APPROXIMATION-THEORY FOR BOUNDARY-VALUE-PROBLEMS ON INFINITE INTERVALS [J].
de Hoog, FR ;
WEISS, R .
COMPUTING, 1980, 24 (2-3) :227-239
[7]   COLLOCATION METHODS FOR SINGULAR BOUNDARY-VALUE PROBLEMS [J].
de Hoog, FR ;
WEISS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :198-217
[8]   NUMERICAL-CALCULATION OF INVARIANT TORI [J].
DIECI, L ;
LORENZ, J ;
RUSSELL, RD .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (03) :607-647
[9]  
DIECI L, IN PRESS SIAM J STAT
[10]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193