ON THE CORRELATION STRUCTURE OF THE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION

被引:42
|
作者
DIJKERMAN, RW [1 ]
MAZUMDAR, RR [1 ]
机构
[1] UNIV QUEBEC,INRS TELECOMMUN,INST NATL RECH SCI,ILE DES SOEURS H3E 1H6,PQ,CANADA
基金
美国国家科学基金会;
关键词
WAVELET TRANSFORM; FRACTIONAL BROWNIAN MOTION; STOCHASTIC PROCESSES;
D O I
10.1109/18.333875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we show that the interdependence of the discrete wavelet coefficients of fractional Brownian motion, defined by the normalized correlation, decays exponentially fast across scales and hyperbolically fast along time.
引用
收藏
页码:1609 / 1612
页数:4
相关论文
共 50 条
  • [21] Wavelet estimation of fractional Brownian motion embedded in a noisy environment
    Zhang, L
    Bao, P
    Wu, XL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) : 2194 - 2200
  • [22] Definition, properties and wavelet analysis of multiscale fractional brownian motion
    Bardet, Jean-Marc
    Bertrand, Pierre
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (01) : 73 - 87
  • [23] Rate optimality of wavelet series approximations of fractional Brownian motion
    Ayache, A
    Taqqu, MS
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (05) : 451 - 471
  • [24] Wavelet-based simulation of fractional Brownian motion revisited
    Pipiras, V
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 49 - 60
  • [25] Rate Optimality of Wavelet Series Approximations of Fractional Brownian Motion
    Antoine Ayache
    Murad S. Taqqu
    Journal of Fourier Analysis and Applications, 2003, 9 : 451 - 471
  • [26] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [27] Wavelet Packets of Fractional Brownian Motion: Asymptotic Analysis and Spectrum Estimation
    Atto, Abdourrahmane Mahamane
    Pastor, Dominique
    Mercier, Gregoire
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4741 - 4753
  • [28] Weak convergence of SFDEs driven by fractional Brownian motion with irregular coefficients
    Suo, Yongqiang
    Yuan, Chenggui
    Zhang, Shao-Qin
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (02) : 278 - 305
  • [29] On the Fourier structure of the zero set of fractional Brownian motion
    Fouche, Willem L.
    Mukeru, Safari
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 459 - 466
  • [30] Fractional Brownian motion with random diffusivity: emerging residual nonergodicity below the correlation time
    Wang, Wei
    Cherstvy, Andrey G.
    Chechkin, Aleksei, V
    Thapa, Samudrajit
    Seno, Flavio
    Liu, Xianbin
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (47)