RAYLEIGH PEAK IN A MOLECULAR FLUID IN THE PRESENCE OF A TEMPERATURE-GRADIENT

被引:1
作者
MAYORGA, M
VELASCO, RM
机构
[1] Department of Physics, Universidad Autónoma Metropolitana, Iztapalapa, 09340, México
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 06期
关键词
D O I
10.1103/PhysRevE.49.5141
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The study of fluctuations around nonequilibrium steady states has shown a very interesting behavior when we calculate the density-density correlation function. In particular, the intensity of the Rayleigh peak is enhanced as a consequence of a resonant coupling between the heat mode induced on the system by external means and the transversal velocity modes. Here we consider a kinetic model for a molecular fluid, obtain the equations of motion, and calculate such an effect. Our results reproduce the calculated and measured characteristics of the spectra and show in an explicit way how the internal degrees of freedom in the molecule modify the structure factor.
引用
收藏
页码:5141 / 5148
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 1991, MOL HYDRODYNAMICS
[2]  
Berne B., 1975, DYNAMIC LIGHT SCATTE
[3]  
FLUGGE S, 1958, HDB PHYSIK, V12
[4]   CONTRIBUTIONS TO NON-EQUILIBRIUM THERMODYNAMICS .1. THEORY OF HYDRODYNAMICAL FLUCTUATIONS [J].
FOX, RF ;
UHLENBECK, GE .
PHYSICS OF FLUIDS, 1970, 13 (08) :1893-+
[5]  
GRAD H, 1949, COMMUN PUR APPL MATH, V2, P341
[6]   LIGHT-SCATTERING FROM NON-EQUILIBRIUM STEADY-STATES [J].
KEYES, T .
PHYSICAL REVIEW A, 1981, 23 (01) :277-284
[7]   EXPERIMENTAL CONFIRMATION OF NONEQUILIBRIUM STEADY-STATE THEORY - BRILLOUIN-SCATTERING IN A TEMPERATURE-GRADIENT [J].
KIEFTE, H ;
CLOUTER, MJ ;
PENNEY, R .
PHYSICAL REVIEW B, 1984, 30 (07) :4017-4020
[8]   FLUCTUATIONS IN A NON-EQUILIBRIUM STEADY-STATE - BASIC EQUATIONS [J].
KIRKPATRICK, TR ;
COHEN, EGD ;
DORFMAN, JR .
PHYSICAL REVIEW A, 1982, 26 (02) :950-971
[9]  
LANDAU LD, 1968, FLUID MECHANICS
[10]   RAYLEIGH-BRILLOUIN SCATTERING OF GASES WITH INTERNAL RELAXATION [J].
LAO, QH ;
SCHOEN, PE ;
CHU, B .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (09) :3547-3555