Incorporation of indium into the quantum well materials of graded-index separate confinement heterostructure quantum well lasers has proven to be a key to imparting a much needed robustness to such lasers. By growing wells which contain both indium and aluminum along with gallium, operating wavelengths can be engineered to fall in the technologically important range of 0.8 microns, appropriate for pumping Nd:YAG. The organometallic vapor phase epitaxial growth of these strained-layer structures faces extra challenges rooted in the competing influences on the energies of the quantized states. At a minimum, meeting wavelength targets requires achieving control of the quaternary composition and of the quantum well thickness. Because laser elements are relatively large, lateral uniformity of wavelength is a critical issue. Device performance is influenced by basic material quality, which is a function of such fundamental growth parameters as temperature, V/III ratio, and growth rate. We have grown InAlGaAs structures using various combinations of growth conditions and well composition and thickness combinations, and evaluated and life-tested lasers in CW mode. The reactor's performance in achieving composition and thickness uniformity is reported, as are data on the influence of the effects of growth conditions on device performance.