ASYMPTOTIC SEPARATION OF VARIABLES

被引:3
作者
ESTRADA, R [1 ]
KANWAL, RP [1 ]
机构
[1] PENN STATE UNIV,DEPT MATH,UNIV PK,PA 16802
关键词
D O I
10.1006/jmaa.1993.1296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study generalized functions f{hook}(x) that admit the asymptotic separation of variables f{hook}(λx) ∼ ρ1(λ)h1(x) + ρ2(λ)h2(x) + ρ3(λ)h3(x) + ···, as λ → ∞, where {ρn(λ)} is an asymptotic sequence. Among other results, we show that when the asymptotic separation of variables holds, the terms have to be homogeneous and associated homogeneous generalized functions. The asymptotic expansion of ρ(λx), as λ → ∞, where ρ is a regularly varying function, is also considered. © 1993 Academic Press. All rights reserved.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 13 条
[1]  
DSYSENETA E, 1976, REGULARLY VARYING FU
[2]   THE ASYMPTOTIC-EXPANSION OF CERTAIN MULTIDIMENSIONAL GENERALIZED-FUNCTIONS [J].
ESTRADA, R ;
KANWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 163 (01) :264-283
[3]   ON ASYMPTOTIC EXPANSIONS OF TWISTED PRODUCTS [J].
ESTRADA, R ;
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) :2789-2796
[4]  
ESTRADA R, 1991, APPL ANAL, V43, P191
[5]  
ESTRADA R, 1987, COMPLEX VARIABLES, V9, P31
[6]  
ESTRADA R, 1990, P ROY SOC LOND A MAT, V478, P399
[7]  
Gelfand I. M., 1964, GENERALIZED FUNCTION, V1
[8]  
Handelsman Richard A., 1975, ASYMPTOTIC EXPANSION
[9]  
Karamata J., 1930, MATHEMATICA, V4, P38
[10]  
Lojasiewicz S., 1957, STUD MATH, V16, P1