AN ITERATED LOGARITHM LAW FOR MAXIMUM IN A STATIONARY GAUSSIAN SEQUENCE

被引:28
作者
PICKANDS, J
机构
[1] Department of Statistics, Virginia Polytechnic Institute College of Arts and Sciences, Blacksburg, 24061, Virginia
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 12卷 / 04期
关键词
D O I
10.1007/BF00538755
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Xn, n=1, 2, ⋯} be the successive terms of a discrete coordinate stationary Gaussian stochastic process. Assume, without loss of generality, that EXn=0 and ro=EXn2=1 for all n. Let rn≡EXkXk+n be the covariance function. If either there exists an α>0 such that {Mathematical expression} then {Mathematical expression} where {Mathematical expression} It is not sufficient that {Mathematical expression} © 1969 Springer-Verlag.
引用
收藏
页码:344 / &
相关论文
共 5 条
  • [1] LIMIT-THEOREMS FOR MAXIMUM TERM IN STATIONARY-SEQUENCES
    BERMAN, SM
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (02): : 502 - +
  • [2] CRAMER H, 1951, MATHEMATICAL METHODS
  • [3] Lo??ve M., 1955, PROBABILITY THEORY
  • [4] PICKANDS J, 1967, ANN MATH STAT, V38, P1570
  • [5] MAXIMA OF STATIONARY GAUSSIAN PROCESSES
    PICKANDS, J
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (03): : 190 - &