RENORMALIZATION-GROUP IN FINITE QED

被引:1
|
作者
SCHARF, G
机构
[1] Institut für Theoretische Physik, Universität Zürich, Zürich, CH-8057, Winterthurerstrasse
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS | 1994年 / 107卷 / 08期
关键词
Electromagnetic and unified gauge fields; Field theory;
D O I
10.1007/BF02775783
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A simple derivation of the Gell-Mann-Low and Callan-Symanzik equations in finite QED is given. We control the corrections depending on the electron mass.
引用
收藏
页码:1427 / 1432
页数:6
相关论文
共 50 条
  • [41] Renormalization group approach to quantum Hamiltonian dynamics
    Glazek, Stanislaw D.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (09):
  • [42] The nonperturbative functional renormalization group and its applications
    Dupuis, N.
    Canet, L.
    Eichhorn, A.
    Metzner, W.
    Pawlowski, J. M.
    Tissier, M.
    Wschebor, N.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 910 : 1 - 114
  • [43] Exact renormalization group and Sine Gordon theory
    Oak, Prafulla
    Sathiapalan, B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (07):
  • [44] Functional renormalization group for quantized anharmonic oscillator
    Nagy, S.
    Sailer, K.
    ANNALS OF PHYSICS, 2011, 326 (08) : 1839 - 1876
  • [45] The numerically optimized regulator and the functional renormalization group
    Marian, I. G.
    Jentschura, U. D.
    Nandori, I.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2014, 41 (05)
  • [46] Spectral functions from the functional renormalization group
    Tripolt, Ralf-Arno
    Strodthoff, Nils
    von Smekal, Lorenz
    Wambach, Jochen
    NUCLEAR PHYSICS A, 2014, 931 : 790 - 795
  • [47] Temperature Independent Renormalization of Finite Temperature Field Theory
    Christoph Kopper
    Volkhard Müller
    Thomas Reisz
    Annales Henri Poincaré, 2001, 2 : 387 - 402
  • [48] Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
    Wu, Xing-Gang
    Ma, Yang
    Wang, Sheng-Quan
    Fu, Hai-Bing
    Ma, Hong-Hao
    Brodsky, Stanley J.
    Mojaza, Matin
    REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (12)
  • [49] Universality Classes of Percolation Processes: Renormalization Group Approach
    Hnatic, Michal
    Honkonen, Juha
    Lucivjansky, Tomas
    Mizisin, Lukas
    SYMMETRY-BASEL, 2023, 15 (09):
  • [50] Functional renormalization group flow of the effective Hamiltonian action
    Vacca, G. P.
    Zambelli, L.
    PHYSICAL REVIEW D, 2012, 86 (08):