NON-LOCALLY DERIVABLE SUBLATTICES IN QUASI-LATTICES

被引:8
作者
LUCK, R
LU, K
机构
[1] National Key Laboratory for Rapidly Solidified Alloys, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110015
基金
美国国家科学基金会;
关键词
D O I
10.1016/0925-8388(94)91088-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The concept of sublattices in quasi-lattices is applied to the two-layer structure of decagonal quasi-crystals such as Al65Cu20Co15 and Al70Ni15Co15. The Penrose pentagon pattern is chosen as the parent lattice for this procedure. This application shows that non-locally derivable sublattices and non-locally derivable patterns play an important role in the crystallography of ordered quasi-crystals. The relationships between the sublattices in question are discussed.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 16 条
[1]   QUASI-PERIODIC TILINGS WITH TENFOLD SYMMETRY AND EQUIVALENCE WITH RESPECT TO LOCAL DERIVABILITY [J].
BAAKE, M ;
SCHLOTTMANN, M ;
JARVIS, PD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :4637-4654
[2]   MATCHING RULES FOR QUASI-CRYSTALS - THE COMPOSITION DECOMPOSITION METHOD [J].
GAHLER, F .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 153 :160-164
[3]  
Gahler F., 1988, Proceedings of the I.L.L./CODEST Workshop: Quasicrystalline Materials, P272
[4]  
Grunbaum B., 1987, TILINGS PATTERNS
[5]   THE SYMMETRY OF QUASI-PERIODIC SYSTEMS [J].
JANSSEN, T .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :243-255
[6]   BASIC IDEAS OF AMMANN BAR GRIDS [J].
LUCK, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (6-7) :1437-1453
[7]   PHASONS IN CHEMICALLY ORDERED QUASI-CRYSTALS [J].
LUCK, R .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 156 :940-943
[8]  
Luck R., 1987, Materials Science Forum, V22-24, P231, DOI 10.4028/www.scientific.net/MSF.22-24.231
[9]   PENROSE SUBLATTICES [J].
LUCK, R .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1990, 117 :832-835
[10]  
LUCK R, IN PRESS 1993 P S QU