Hamiltonian actions of unipotent groups on compact Kshler manifolds

被引:0
作者
Greb, Daniel [1 ]
Miebach, Christian [2 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essener Seminar Algebra Geometr & Arithmet, D-45117 Essen, Germany
[2] Univ Littoral Cote dOpale, EA 2797, LMPA Lab Math Pures & Appl Joseph Liouville, F-62228 Calais, France
来源
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE | 2018年 / 2卷
关键词
Unipotent algebraic groups; automorphisms of compact Kahler manifolds; Kahler metrics on fibre bundles and homogeneous spaces; moment maps; symplectic reduction; Geometric Invariant Theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study meromorphic actions of unipotent complex Lie groups on compact Kahler manifolds using moment map techniques. We introduce natural stability conditions and show that sets of semistable points are Zariski-open and admit geometric quotients that carry compactifiable Kahler structures obtained by symplectic reduction. The relation of our complex-analytic theory to the work of Doran-Kirwan regarding the Geometric Invariant Theory of unipotent group actions on projective varieties is discussed in detail.
引用
收藏
页数:30
相关论文
共 46 条
[1]   HOLOMORPHIC-FUNCTIONS ON RING SPACES [J].
BARLET, D ;
VAROUCHAS, J .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (03) :327-341
[2]   QUOTIENTS BY C-STAR X C-STAR ACTIONS [J].
BIALYNICKIBIRULA, A ;
SOMMESE, AJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (02) :519-543
[3]  
Blanchard A., 1956, ANN SCI ECOLE NORM S, V73, P157
[4]  
Borel A., 1991, GRADUATE TEXTS MATH, V126
[5]  
Bott R., 1982, GRADUATE TEXTS MATH, V82
[6]  
Brion M., 2014, SPRINGER P MATH STAT, V79, P59
[7]   NON-REDUCTIVE AUTOMORPHISM GROUPS, THE LOEWY FILTRATION AND K-STABILITY [J].
Codogni, Giulio ;
Dervan, Ruadhai .
ANNALES DE L INSTITUT FOURIER, 2016, 66 (05) :1895-1921
[8]  
Demailly J.P., 2012, COMPLEX ANAL DIFFERE
[9]  
Doran B, 2007, PURE APPL MATH Q, V3, P61
[10]   AUTOMORPHISM GROUPS OF COMPACT KAHLER MANIFOLDS [J].
FUJIKI, A .
INVENTIONES MATHEMATICAE, 1978, 44 (03) :225-258