RECENT DEVELOPMENTS IN TREE-PRUNING METHODS AND POLYNOMIALS FOR CACTUS GRAPHS AND TREES

被引:17
作者
Balasubramanian, K. [1 ]
机构
[1] Arizona State Univ, Dept Chem, Tempe, AZ 85287 USA
关键词
D O I
10.1007/BF01170006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The object of this paper is to review the recent developments in tree-pruning methods and characteristic and matching polynomials of spirographs, cacti and trees. The applications of the pruning method to spirographs, Bethe lattices, cactus lattices and Bethe cactus lattices are considered. In each case, the tree-pruning method yields analytical solutions for these graphs.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 58 条
[11]  
Balasubramanian K., 1979, THEOR CHIM ACTA, V51, P39
[12]  
Balasubramanian K., 1983, STUDIES PHYS THEORET, P243
[13]  
Balasubramanian K., 1986, MATH COMPUTATIONAL C, P20
[14]  
Balasubramanian K., 1985, CHEM REV, V88, P599
[15]  
Balasubramanian K., 1984, J COMPUT CHEM, V3, P357
[16]  
Barakat R., 1985, THEOR CHIM ACTA, V69, P35
[17]  
Cvetkovic D.M., 1980, SPECTRA GRAPHS THEOR, V87
[18]  
El-Basil S., 1985, THEOR CHIM ACTA, V65, P199
[19]   INTRODUCTION TO MATCHING POLYNOMIALS [J].
FARRELL, EJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (01) :75-86
[20]   SOME CLUSTER SIZE AND PERCOLATION PROBLEMS [J].
FISHER, ME ;
ESSAM, JW .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (04) :609-&