GEOMETRIC MEASURES FOR PARABOLIC RATIONAL MAPS

被引:30
作者
DENKER, M
URBANSKI, M
机构
[1] INST MATH STOCHASTIK,W-3400 GOTTINGEN,GERMANY
[2] UMK,INST MATEMAT,PL-87100 TORUN,POLAND
关键词
D O I
10.1017/S014338570000657X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure H(h) on J(T), if h greater-than-or-equal-to 1, and equals the h-dimensional packing measure PI(h) on J(T), if h less-than-or-equal-to 1. Moreover, if h < 1, then H(h), = 0 and, if h > 1, then PI(h)(J(T)) = infinity.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 10 条
[1]  
AARONSON J, IN PRESS T AM MATH S
[2]   COMPLEX ANALYTIC DYNAMICS ON THE RIEMANN SPHERE [J].
BLANCHARD, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (01) :85-141
[3]   INVRAIANT SETS UNDER ITERATION OF RATIONAL FUNCTIONS [J].
BROLIN, H .
ARKIV FOR MATEMATIK, 1965, 6 (02) :103-&
[4]   ABSOLUTELY CONTINUOUS INVARIANT-MEASURES FOR EXPANSIVE RATIONAL MAPS WITH RATIONALLY INDIFFERENT PERIODIC POINTS [J].
DENKER, M ;
URBANSKI, M .
FORUM MATHEMATICUM, 1991, 3 (06) :561-579
[5]   HAUSDORFF AND CONFORMAL MEASURES ON JULIA SETS WITH A RATIONALLY INDIFFERENT PERIODIC POINT [J].
DENKER, M ;
URBANSKI, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 43 :107-118
[6]  
GUZMAN M, 1975, SPRINGER LECTURE NOT, V481
[7]  
Hille E., 1962, ANAL FUNCTION THEORY
[8]  
MILNOR J, 1990, DYNAMICS ONE COMPLEX
[9]  
SULLIVAN D, 1983, LECT NOTES MATH, V1007, P725
[10]   ENTROPY, HAUSDORFF MEASURES OLD AND NEW, AND LIMIT-SETS OF GEOMETRICALLY FINITE KLEINIAN-GROUPS [J].
SULLIVAN, D .
ACTA MATHEMATICA, 1984, 153 (3-4) :259-277