THE DIRICHLET PROBLEM FOR ELLIPTIC-SYSTEMS IN PIECEWISE C(1) PLANE DOMAINS

被引:2
作者
DIOMEDA, L [1 ]
LISENA, B [1 ]
机构
[1] UNIV BARI,DIPARTIMENTO MATEMAT,I-70124 BARI,ITALY
关键词
D O I
10.1512/iumj.1992.41.41035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Dirichlet problem for a strongly elliptic system Lu = 0 with boundary data in L(p)(partial-derivative OMEGA). 1 < p < +infinity, in a piecewise C1 plane domain OMEGA. We show that it is always possible to represent the solution in the form of a double layer potential for which the boundary integral operator is always a Fredholm operator of index 0 for all p, 2 < p < +infinity.
引用
收藏
页码:649 / 670
页数:22
相关论文
共 12 条
[1]  
DAHLBERG BEJ, 1988, DUKE MATH J, V37, P795
[2]   ASYMPTOTICS OF SOLUTIONS TO PSEUDODIFFERENTIAL-EQUATIONS OF MELLIN TYPE [J].
ELSCHNER, J .
MATHEMATISCHE NACHRICHTEN, 1987, 130 :267-305
[3]  
FABES E, 1987, LECT NOTES MATH, V1344, P55
[4]   THE DIRICHLET PROBLEM FOR THE STOKES SYSTEM ON LIPSCHITZ-DOMAINS [J].
FABES, EB ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :769-793
[5]   DOUBLE-LAYER POTENTIALS FOR DOMAINS WITH CORNERS AND EDGES [J].
FABES, EB ;
JODEIT, M ;
LEWIS, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (01) :95-114
[6]  
HEARMON RFS, 1966, INTRO APPLIED ANISOT
[7]  
KENG HL, 1985, 2ND ORDER SYSTEMS PA
[8]  
KENIG CE, 1985, P SYMP PURE MATH, V43, P175
[9]  
Ladyzhenskaya O., 1963, MATH THEORY VISCOUS