AN EQUIVALENT REDUCTION OF THE BETHE-SALPETER-EQUATION FOR MULTI-FERMION BOUND-STATES

被引:7
|
作者
SU, JC
机构
关键词
D O I
10.1088/0253-6102/15/2/229
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of the renormalized Dirac spinor wave function and through the introduction of an effective interaction operator, the exact Bethe-Salpeter equation for multi-fermion bound states has been reduced to an equivalent Pauli-Schrodinger equation. As a result, the specific form of the latter equation in the static approximation has directly been given as well. In comparison of the effective interaction operator appearing in the Pauli-Schrodinger equation with the corresponding S-matrix, a substantial difference between both interactions acting in the bound state and the scattering state emerges which is important to determine an interaction potential in the bound state.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 50 条
  • [31] BETHE-SALPETER-EQUATION WITH THE SINE-GORDON INTERACTION
    MALIK, GP
    JOHRI, G
    PRAMANA, 1984, 23 (06) : 703 - 713
  • [32] THE BETHE-SALPETER-EQUATION AND THE DISPERSION-RELATION TECHNIQUE
    ANISOVICH, VV
    MELIKHOV, DI
    METSCH, BC
    PETRY, HR
    NUCLEAR PHYSICS A, 1993, 563 (04) : 549 - 583
  • [33] Spectra of heavy quarkonia in a Bethe-Salpeter-equation approach
    Hilger, T.
    Popovici, C.
    Gomez-Rocha, M.
    Krassnigg, A.
    PHYSICAL REVIEW D, 2015, 91 (03):
  • [34] COVARIANT HARMONIC-OSCILLATORS AND THE BETHE-SALPETER-EQUATION
    NOZ, ME
    KIM, YS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 596 - 596
  • [35] BETHE-SALPETER-EQUATION FOR SPIN-0-SPIN-1/2 AND SPIN-0-SPIN-0 BOUND-STATES - PERTURBATION-THEORY AND APPLICATIONS
    HALPERT, M
    OWEN, DA
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1994, 20 (01) : 51 - 64
  • [36] CRITICAL LINE AND BETHE-SALPETER-EQUATION IN STRONG-COUPLING QED WITH 4-FERMION INTERACTIONS
    INOUE, M
    MUTA, T
    OCHIUMI, T
    MODERN PHYSICS LETTERS A, 1989, 4 (07) : 605 - 612
  • [37] ON FERMION-ANTIFERMION BETHE-SALPETER EQUATION FOR STRONGLY BOUND SYSTEMS
    CIAFALONL, M
    NUOVO CIMENTO A, 1967, 51 (04): : 1090 - +
  • [38] APPROXIMATE SOLUTION OF BETHE-SALPETER EQUATION FOR BOUND STATES
    KAWAGUCHI, M
    NUOVO CIMENTO, 1964, 34 (03): : 791 - +
  • [39] Bound states from the spectral Bethe-Salpeter equation
    Eichmann, Gernot
    Gomez, Andres
    Horak, Jan
    Pawlowski, Jan M.
    Wessely, Jonas
    Wink, Nicolas
    PHYSICAL REVIEW D, 2024, 109 (09)
  • [40] RELATIVISTIC OSCILLATOR IN A BETHE-SALPETER MODEL - NONEXISTENCE OF DISCRETE BOUND-STATES
    BISWAS, SN
    CHOUDHURY, SR
    DATTA, K
    GOYAL, A
    PHYSICAL REVIEW D, 1982, 26 (08): : 1983 - 1987