DIRICHLET POLYHEDRA FOR CYCLIC GROUPS IN COMPLEX HYPERBOLIC SPACE

被引:16
作者
PHILLIPS, MB [1 ]
机构
[1] UNIV RICHMOND,DEPT MATH & COMP SCI,RICHMOND,VA 23173
关键词
DISCRETE GROUPS; FUNDAMENTAL DOMAIN; COMPLEX HYPERBOLIC SPACE;
D O I
10.2307/2159589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Dirichlet fundamental polyhedron for a cyclic group generated by a unipotent or hyperbolic element-gamma acting on complex hyperbolic n-space centered at an arbitrary point omega is bounded by the two hypersurfaces equidistant from the pairs omega, gamma-omega and omega, gamma-1 omega respectively. The proof relies on a convexity property of the distance to an isometric flow containing gamma .
引用
收藏
页码:221 / 228
页数:8
相关论文
共 10 条
[1]  
Beardon A. F., 1983, GRADUATE TEXTS MATH, V91
[2]  
BOWDITCH BH, GEOMETRIC FINITENESS
[3]  
Chen SS, 1974, HYPERBOLIC SPACES CO, P49
[4]   DIRICHLET REGIONS IN MANIFOLDS WITHOUT CONJUGATE POINTS [J].
EHRLICH, PE ;
IMHOF, HC .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (04) :642-658
[5]  
EPSTEIN DBA, 1984, LONDON MATH SOC LECT, V0111, P00093
[6]  
GOLDMAN WM, 1990, INTRO COMPLEX HYPERB
[7]  
JORGENSEN, 1973, MATH SCAND, V33, P250
[8]  
Kobayashi S., 1969, INTERSCIENCE TRACTS, VII
[9]   ON A REMARKABLE CLASS OF POLYHEDRA IN COMPLEX HYPERBOLIC SPACE [J].
MOSTOW, GD .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (01) :171-276
[10]  
PHILLIPS MB, 1990, THESIS U MARYLAND CO