ON THE ARC-SINE LAWS FOR LEVY PROCESSES

被引:10
作者
GETOOR, RK [1 ]
SHARPE, MJ [1 ]
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH 0112,9500 GILMAN DR,LA JOLLA,CA 92093
关键词
SPITZERS THEOREM; RANDOM WALKS;
D O I
10.2307/3215236
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a Levy process on the real line, and let F(c) denote the generalized arc-sine law on [0, 1] with parameter c. Then t-1 integral-t/0 P0(X(s) > 0)ds --> c as t --> infinity is a necessary and sufficient condition for t-1 integral-t/0 1{Xs > 0} ds to converge in P0 law to F(c). Moreover, P0(X(t) > 0) = c for all t > 0 is a necessary and sufficient condition for t-1 integral-t/0 1{Xs > 0}ds under p0 to have law F(c) for all t > 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Levy process version.
引用
收藏
页码:76 / 89
页数:14
相关论文
共 13 条
[1]  
Andersen E.S., 1954, MATH SCAND, V2, P194, DOI [DOI 10.7146/MATH.SCAND.A-10407, 10.7146/math.scand.a-10407]
[2]  
[Anonymous], 1991, INTRO PROBABILITY TH
[3]  
[Anonymous], 1940, COMPOS MATH, DOI DOI 10.1080/17442508508833361
[4]  
Bingham N. H., 1983, LONDON MATH SOC LECT, V79, P46
[5]   ASYMPTOTIC BEHAVIOR OF SOME FUNCTIONALS OF PROCESSES WITH INDEPENDENT INCREMENTS [J].
DAVYDOV, YA ;
IBRAGIMO.IA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (01) :162-&
[6]  
Davydov YA, 1973, TH PROBAB APPL, VXVIII, P431
[7]  
LEVY P., 1939, CR HEBD ACAD SCI, V208, P776
[8]  
LEVY P., 1939, CR HEBD ACAD SCI, V208, P318
[9]   ON JOINT DISTRIBUTIONS OF RANDOM VARIABLES ASSOCIATED WITH FLUCTUATIONS OF A PROCESS WITH INDEPENDENT INCREMENTS [J].
PECHERSK.EA ;
ROGOZIN, BA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (03) :410-&
[10]  
Spitzer F., 1956, T AM MATH SOC, V82, P323