PARAMETER-ESTIMATION IN REGRESSION-MODELS WITH AUTOCORRELATED ERRORS USING IRREGULAR DATA

被引:2
|
作者
SHIN, DW
SARKAR, S
机构
[1] UNIV SUWON,DEPT APPL STAT,SUWON,SOUTH KOREA
[2] OKLAHOMA STATE UNIV,DEPT STAT,STILLWATER,OK 74078
关键词
REGRESSION; INCOMPLETE DATA; AUTOCORRELATED ERRORS; MAXIMUM LIKELIHOOD ESTIMATOR; LEAST SQUARES ESTIMATOR; CONSISTENCY; ASYMPTOTIC NORMALITY;
D O I
10.1080/03610929408831465
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the least squares and the Gaussian maximum likelihood estimators in the regression model with stochastic explanatory variables and autocorrelated errors, possibly nonnormal, in the situation where data contain irregular observations or missing values. We establish the weak consistency and asymptotic normality of the estimators. We compare the efficiency of the least squares estimator of the regression parameter to that of the maximum likelihood estimator for a special case of the model.
引用
收藏
页码:3567 / 3580
页数:14
相关论文
共 50 条