INHOMOGENEOUS MINIMA OF A CLASS OF TERNARY QUADRATIC-FORMS

被引:1
作者
RAKA, M
机构
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1993年 / 55卷
关键词
D O I
10.1017/S144678870003408X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let GAMMA2,1(k) denote the kth successive inhomogeneous minima for positive values of real indefinite ternary quadratic forms of type (2, 1). Here it is proved that for the class of zero forms GAMMA2,1(2) = 8/3, GAMMA2,1(3) = 9/4, GAMMA2,1(4) = 2. All the critical forms have also been obtained. GAMMA2,1(1) = 4 is already known. For non-zero forms it is proved that GAMMA2,1(1) < 10/3.
引用
收藏
页码:334 / 354
页数:21
相关论文
共 18 条
[1]   POSITIVE VALUES OF NON-HOMOGENEOUS INDEFINITE QUADRATIC-FORMS .2. [J].
BAMBAH, RP ;
DUMIR, VC ;
HANSGILL, RJ .
JOURNAL OF NUMBER THEORY, 1984, 18 (03) :313-341
[2]  
BAMBAH RP, 1981, TOPICS CLASSICAL NUM, P111
[3]   THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM [J].
BARNES, ES .
ACTA MATHEMATICA, 1954, 92 (02) :13-33
[4]   THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM .2. [J].
BARNES, ES .
ACTA MATHEMATICA, 1956, 96 (1-2) :67-97
[5]  
BARNES ES, 1955, P LOND MATH SOC, V5, P185
[6]  
BARNES ES, 1961, J AUSTRAL MATH SOC, V2, P127
[7]  
BLANEY H, 1950, QUART J MATH OXFORD, V1, P252
[8]  
BLANEY H, 1950, AMTH P CAMBRIDGE PHI, V46, P359
[9]   NON-HOMOGENEOUS TERNARY QUADRATIC FORMS [J].
DAVENPORT, H .
ACTA MATHEMATICA, 1948, 80 (02) :65-95
[10]  
DAVENPORT H, 1946, P KON NEDER L AKAD W, V49, P815