Metabolic activation of clopidogrel: in vitro data provide conflicting evidence for the contributions of CYP2C19 and PON1

被引:21
作者
Polasek, Thomas M. [1 ,2 ]
Doogue, Matthew P. [1 ,2 ]
Miners, John O. [1 ,2 ]
机构
[1] Flinders Univ S Australia, Dept Clin Pharmacol, Sturt Rd, Adelaide, SA 5042, Australia
[2] Flinders Med Ctr, Sturt Rd, Adelaide, SA 5042, Australia
关键词
antiplatelet; clopidogrel; cytochrome P4502C19; metabolic activation; paraoxonase-1; pharmacogenomics;
D O I
10.1177/2042098611422559
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The recent report that clopidogrel efficacy may be more dependent on paraoxonase-1 (PON1) than on cytochrome P450 2C19 (CYP2C19) activity raises questions about the roles of these and other enzymes in clopidogrel activation. To provide insight into the emerging PON1 versus CYP2C19 debate, this commentary summarizes the clinical evidence on the pharmacokinetic determinants of clopidogrel efficacy. We then review the in vitro studies investigating the enzymes involved in clopidogrel activation, and comment on their strengths and limitations. There is agreement amongst in vitro studies regarding the involvement of CYP1A2 and CYP2B6 in the metabolism of clopidogrel to 2-oxo-clopidogrel. However, the evidence for other CYP enzymes in the first activation step (e.g. CYP2C19 and CYP3A4) is inconsistent and dependent on the in vitro test system and laboratory. All major drug metabolizing CYP enzymes are capable of converting 2-oxo-clopidogrel to sulfenic acid intermediates that subsequently form the active thiol metabolite. However, the extent of CYP involvement in this second step has been challenged, and new evidence suggests that CYP-independent hydrolytic cleavage of the thioester bond may be more important than oxidative metabolism.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 33 条
[11]  
Kurihara A., 2005, DRUG METAB REV S2, V37, P99
[12]   Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation - A new drug-drug interaction [J].
Lau, WC ;
Waskell, LA ;
Watkins, PB ;
Neer, CJ ;
Horowitz, K ;
Hopp, AS ;
Tait, AR ;
Carville, DGM ;
Guyer, KE ;
Bates, ER .
CIRCULATION, 2003, 107 (01) :32-37
[13]  
Lau WC, 2000, CIRCULATION, V102, P429
[14]   Reduced-Function CYP2C19 Genotype and Risk of Adverse Clinical Outcomes Among Patients Treated With Clopidogrel Predominantly for PCI A Meta-analysis [J].
Mega, Jessica L. ;
Simon, Tabassome ;
Collet, Jean-Philippe ;
Anderson, Jeffrey L. ;
Antman, Elliott M. ;
Bliden, Kevin ;
Cannon, Christopher P. ;
Danchin, Nicolas ;
Giusti, Betti ;
Gurbel, Paul ;
Horne, Benjamin D. ;
Hulot, Jean-Sebastian ;
Kastrati, Adnan ;
Montalescot, Gilles ;
Neumann, Franz-Josef ;
Shen, Lei ;
Sibbing, Dirk ;
Steg, P. Gabriel ;
Trenk, Dietmar ;
Wiviott, Stephen D. ;
Sabatine, Marc S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2010, 304 (16) :1821-1830
[15]   Evolution of drug metabolism: Hitchhiking the technology bandwagon [J].
Miners, JO .
CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2002, 29 (11) :1040-1044
[16]   P450 IN THE RAT AND MAN - METHODS OF INVESTIGATION, SUBSTRATE SPECIFICITIES AND RELEVANCE TO CANCER [J].
NEDELCHEVA, V ;
GUT, I .
XENOBIOTICA, 1994, 24 (12) :1151-1175
[17]   Comparison of mechanism-based inhibition of human cytochrome P450 2C19 by ticlopidine, clopidogrel, and prasugrel [J].
Nishiya, Y. ;
Hagihara, K. ;
Kurihara, A. ;
Okudaira, N. ;
Farid, N. A. ;
Okazaki, O. ;
Ikeda, T. .
XENOBIOTICA, 2009, 39 (11) :836-843
[18]   Structure and stereochemistry of the active metabolite of clopidogrel [J].
Pereillo, JM ;
Maftouh, M ;
Andrieu, A ;
Uzabiaga, MF ;
Fedeli, O ;
Savi, P ;
Pascal, M ;
Herbert, JM ;
Maffrand, JP ;
Picard, C .
DRUG METABOLISM AND DISPOSITION, 2002, 30 (11) :1288-1295
[19]  
POLASEK TM, 2011, J PHARM PRACT RES, V41, P14
[20]   CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network [J].
Relling, M. V. ;
Klein, T. E. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2011, 89 (03) :464-467