Using high-performance liquid chromatography (HPLC) in combination with radioimmunoassay, three forms of alpha-MSH (des-acetyl, mono-acetyl and di-acetyl alpha-MSH) were separated and identified in tilapia neurointermediate lobes and plasma, and in medium from lobes superfused in vitro. The presence of acetylated forms in lobe extracts indicated that the peptides are acetylated intracellularly. Di-acetyl alpha-MSH was, especially in comparison with mono-acetyl alpha-MSH, relatively more abundant in lobe extracts than in plasma. This suggests that the three forms of alpha-MSH are not released according to their relative intracellular abundances. The possibility of regulation of this differential release by dopamine and TRH was investigated, using a microsuperfusion system. Dopamine was a potent inhibitor of alpha-MSH release, but did not modulate the relative abundance of the different forms of alpha-MSH released from the MSH cells. TRH was a potent stimulator of alpha-MSH release. It enhanced in vitro the release of di-acetyl alpha-MSH more than the release of mono-acetyl alpha-MSH. Thus tilapia may be able to modulate not only the quantitative but also the qualitative signal from the MSH cells. This might enhance the flexibility of the animals to respond to environmental challenges.