STABILIZABILITY OF LINEAR TIME-VARYING AND UNCERTAIN LINEAR-SYSTEMS

被引:30
作者
ROTEA, MA [1 ]
KHARGONEKAR, PP [1 ]
机构
[1] UNIV MINNESOTA,DEPT ELECT ENGN,MINNEAPOLIS,MN 55455
关键词
CONTROL SYSTEMS; TIME VARYING -- Mathematical Models;
D O I
10.1109/9.1325
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feedback stabilization of linear time-varying and uncertain linear systems is considered. It is proved that given a stabilizing dynamic linear state-feedback controller, one can always construct a stabilizing nondynamic linear state-feedback controller. A similar result is shown for uncertain linear systems. A linear time-varying system can be stabilized by dynamic output feedback if and only if it admits a coprime factorization.
引用
收藏
页码:884 / 887
页数:4
相关论文
共 10 条
[2]   STABILIZATION OF UNCERTAIN SYSTEMS VIA LINEAR-CONTROL [J].
BARMISH, BR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (08) :848-850
[3]  
Coddington EA, 1955, THEORY ORDINARY DIFF
[4]  
DESOER CA, 1980, IEEE T AUTOMAT CONTR, V25, P399, DOI 10.1109/TAC.1980.1102374
[5]  
Kalman R. E., 1960, J BASIC ENG-T ASME, V82, P371
[6]   LINEAR-SYSTEMS WITH COMMENSURATE TIME DELAYS - STABILITY AND STABILIZATION INDEPENDENT OF DELAY [J].
KAMEN, EW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (02) :367-375
[7]   ON THE RELATION BETWEEN STABLE MATRIX-FRACTION FACTORIZATIONS AND REGULABLE REALIZATIONS OF LINEAR-SYSTEMS OVER RINGS [J].
KHARGONEKAR, PP ;
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) :627-638
[8]   A CONNECTION BETWEEN STATE-SPACE AND DOUBLY COPRIME FRACTIONAL REPRESENTATIONS [J].
NETT, CN ;
JACOBSON, CA ;
BALAS, MJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (09) :831-832
[9]   STABILIZABILITY AND STABLE-PROPER FACTORIZATIONS FOR LINEAR TIME-VARYING SYSTEMS [J].
POOLLA, K ;
KHARGONEKAR, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :723-736
[10]  
VIDYASAGAR M, 1985, CONTROL SYSTEMS SYNT