SIMPLE GROUPS STABILIZING POLYNOMIALS

被引:24
作者
Garibaldi, Skip [1 ]
Guralnick, Robert M. [2 ]
机构
[1] UCLA, Inst Pure & Appl Math, 460 Portola Plaza,Box 957121, Los Angeles, CA 90095 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/fmp.2015.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of determining, for a polynomial function f on a vector space V, the linear transformations g of V such that f o g = f. When f is invariant under a simple algebraic group G acting irreducibly on V, we note that the subgroup of GL(V) stabilizing f often has identity component G, and we give applications realizing various groups, including the largest exceptional group E-8, as automorphism groups of polynomials and algebras. We show that, starting with a simple group G and an irreducible representation V, one can almost always find an f whose stabilizer has identity component G, and that no such f exists in the short list of excluded cases. This relies on our core technical result, the enumeration of inclusions G < H 6 <= (V) such that V / H has the same dimension as V / G. The main results of this paper are new even in the special case where k is the complex numbers.
引用
收藏
页数:41
相关论文
共 91 条
[61]   Division algebras with infinite genus [J].
Meyer, Jeffrey S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :463-468
[62]   Geometric complexity theory I:: An approach to the P vs. NP and related problems [J].
Mulmuley, KD ;
Sohoni, M .
SIAM JOURNAL ON COMPUTING, 2001, 31 (02) :496-526
[63]  
Nakajima H., 1979, TSUKUBA J MATH, V3, P109
[64]  
Popov V. L., 1980, T MOSCOW MATH SOC, P181
[65]  
POPOV VL, 1992, TRANSLATIONS MATH MO, V100
[66]  
Premet A. A., 1986, VESTSI AKAD NAVUK BS, V5, P11
[67]  
Premet A. A., 1987, MATH USSR SB, V57, P151
[68]  
Reichstein Z., 2012, NOT AM MATH SOC, V59, P1432, DOI DOI 10.1090/N0TI909.MR3025902
[69]  
Reichstein Z, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, P162
[70]  
Richardson R. W., 1977, B LOND MATH SOC, V9, P38, DOI 10.1112/blms/9.1.38