SIMPLE GROUPS STABILIZING POLYNOMIALS

被引:24
作者
Garibaldi, Skip [1 ]
Guralnick, Robert M. [2 ]
机构
[1] UCLA, Inst Pure & Appl Math, 460 Portola Plaza,Box 957121, Los Angeles, CA 90095 USA
[2] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/fmp.2015.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of determining, for a polynomial function f on a vector space V, the linear transformations g of V such that f o g = f. When f is invariant under a simple algebraic group G acting irreducibly on V, we note that the subgroup of GL(V) stabilizing f often has identity component G, and we give applications realizing various groups, including the largest exceptional group E-8, as automorphism groups of polynomials and algebras. We show that, starting with a simple group G and an irreducible representation V, one can almost always find an f whose stabilizer has identity component G, and that no such f exists in the short list of excluded cases. This relies on our core technical result, the enumeration of inclusions G < H 6 <= (V) such that V / H has the same dimension as V / G. The main results of this paper are new even in the special case where k is the complex numbers.
引用
收藏
页数:41
相关论文
共 91 条
[1]  
Andreev E. M., 1968, FUNCT ANAL APPL, V1, P257
[2]   ON THE STRUCTURE OF PARABOLIC SUBGROUPS [J].
AZAD, H ;
BARRY, M ;
SEITZ, G .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) :551-562
[3]   A geometric approach to complete reducibility [J].
Bate, M ;
Martin, B ;
Röhrle, G .
INVENTIONES MATHEMATICAE, 2005, 161 (01) :177-218
[4]   Classifying forms of simple groups via their invariant polynomials [J].
Bermudez, H. ;
Ruozzi, A. .
JOURNAL OF ALGEBRA, 2015, 424 :448-463
[5]   LINEAR PRESERVERS AND REPRESENTATIONS WITH A 1-DIMENSIONAL RING OF INVARIANTS [J].
Bermudez, H. ;
Garibaldi, S. ;
Larsen, V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4755-4780
[6]  
BLOCK RE, 1964, ILLINOIS J MATH, V8
[7]   HOMOMORPHISM ABSTRACTS OF SIMPLE ALGEBRAIC GROUPS [J].
BOREL, A ;
TITS, J .
ANNALS OF MATHEMATICS, 1973, 97 (03) :499-571
[8]  
Borel A., 1972, PUBL MATH IHES, V41, P253
[9]  
Borel A., 1965, PUBLICATIONS MATHEMA, V27, P55, DOI 10.1007/BF02684375
[10]  
Borthwick D., 2011, NOTICES AM MATH SOC, V58, P1055