Sustaining Disruption? The Transition from Statistical to Neural Machine Translation

被引:10
作者
Kenny, Dorothy [1 ]
机构
[1] Dublin City Univ, Dublin, Ireland
来源
TRADUMATICA-TRADUCCIO I TECNOLOGIES DE LA INFORMACIO I LA COMUNICACIO | 2018年 / 16期
关键词
disruptive innovation; machine translation; statistical MT; neural MT; quality metrics; mobility;
D O I
10.5565/rev/tradumatica.221
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
If statistical machine translation (SMT) was a disruptive technology, then neural machine translation (NMT) is probably a sustaining technology, continuing on a trajectory already established by SMT, and initially evaluated in much the same way as its predecessor. Seeing NMT in this light may be a useful corrective to the hype that has surrounded its introduction.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 38 条
  • [1] [Anonymous], 2015, NON TRADITIONAL REF
  • [2] [Anonymous], 2015, THE ECONOMIST
  • [3] [Anonymous], 2011, ECONOMIST
  • [4] Bentivogli L., 2016, EMNLP 2016
  • [5] Brown P, 1988, P 2 INT C THEOR METH
  • [6] Brynjolfsson E, 2014, 2 MACHINE AGE WORK P
  • [7] Castilho Sheila, 2017, Prague Bulletin of Mathematical Linguistics, P109, DOI 10.1515/pralin-2017-0013
  • [8] Castilho S, 2018, MACH TRANS TECH APPL, V1, P9, DOI 10.1007/978-3-319-91241-7_2
  • [9] Christensen C.M., 1997, INNOVATORS DILEMMA N
  • [10] Christensen C.M., 2003, INNOVATORS SOLUTION