METASTABLE CHAOS - TRANSITION TO SUSTAINED CHAOTIC BEHAVIOR IN THE LORENTZ MODEL

被引:277
作者
YORKE, JA
YORKE, ED
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,CATONSVILLE,MD 21228
关键词
chaos; Lorenz system; Turbulence;
D O I
10.1007/BF01011469
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The system of equations introduced by Lorenz to model turbulent convective flow is studied here for Rayleigh numbers r somewhat smaller than the critical value required for sustained chaotic behavior. In this regime the system is found to exhibit transient chaotic behavior. Some statistical properties of this transient chaos are examined numerically. A mean decay time from chaos to steady flow is found and its dependence upon r is studied both numerically and (very close to the critical r) analytically. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:263 / 277
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1972, Mem. Societe Royale des Sciences de Liege
[2]   TRANSITION IN CIRCULAR COUETTE FLOW [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1965, 21 :385-&
[3]   STABILITY CHARACTERISTICS OF A SINGLE-PHASE FREE CONVECTION LOOP [J].
CREVELING, HF ;
DEPAZ, JF ;
BALADI, JY ;
SCHOENHALS, RJ .
JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN14) :65-84
[4]  
CURRY J, 1977, GENERALIZED LORENZ S
[5]  
EFRAMOVICH VS, 1977, DOKL AKAD NAUK SSSR, V234, P336
[6]  
GUCKENHEIMER J, 1978, STRUCTURAL STABILITY
[7]   ANALOGY BETWEEN HIGHER INSTABILITIES IN FLUIDS AND LASERS [J].
HAKEN, H .
PHYSICS LETTERS A, 1975, A 53 (01) :77-78
[8]  
KAPLAN JL, 1977, P NEW YORK ACAD SCI
[9]  
KAPLAN JL, COMM MATH PHYS
[10]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992