TESTING THE GOODNESS OF FIT OF A LINEAR-MODEL VIA NONPARAMETRIC REGRESSION TECHNIQUES

被引:196
作者
EUBANK, RL
SPIEGELMAN, CH
机构
关键词
D O I
10.2307/2289774
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:387 / 392
页数:6
相关论文
共 26 条
[1]  
AZZALINI A, 1989, BIOMETRIKA, V76, P1
[2]   A SMOOTHING SPLINE BASED TEST OF MODEL ADEQUACY IN POLYNOMIAL REGRESSION [J].
COX, D ;
KOH, E .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1989, 41 (02) :383-400
[3]   TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED SPLINE MODELS [J].
COX, D ;
KOH, E ;
WAHBA, G ;
YANDELL, BS .
ANNALS OF STATISTICS, 1988, 16 (01) :113-119
[4]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[5]  
DEJONG P, 1987, PBAB THEORY RELATED, V25, P261
[6]   OSCILLATION MATRICES WITH SPLINE SMOOTHING [J].
DEMMLER, A ;
REINSCH, C .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :375-382
[7]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[8]  
GASSER T, 1986, BIOMETRIKA, V73, P625
[9]  
Gunst R., 1980, REGRESSION ANAL ITS, DOI 10.1201/9780203741054
[10]  
HARDLE W, 1988, UNPUB COMP NONPARAME