DISPERSION-RELATION IN THE HIGH-FREQUENCY LIMIT AND NONLINEAR-WAVE STABILITY FOR HYPERBOLIC DISSIPATIVE SYSTEMS

被引:33
作者
MURACCHINI, A [1 ]
RUGGERI, T [1 ]
SECCIA, L [1 ]
机构
[1] UNIV BOLOGNA,CIRAM,APPL MATH RES CTR,I-40123 BOLOGNA,ITALY
关键词
D O I
10.1016/0165-2125(92)90015-T
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We consider a quasi-linear first order hyperbolic dissipative system in a one-dimensional space, and we prove that, if the constant solutions are stable for the linearized system, then they are also non-linear asymptotically lambda-stable, i.e. the amplitude of the discontinuity wave vanishes, when t increases, provided that the initial amplitude is sufficiently small. In order to give the proof an evaluation of the dispersion law in the limit of high frequencies is accomplished, and the results are applied to the case of the Extended Thermodynamics for a non-equilibrium monatomic classical gas.
引用
收藏
页码:143 / 158
页数:16
相关论文
共 18 条
[1]   EVOLUTION LAW OF WEAK DISCONTINUITIES FOR HYPERBOLIC QUASILINEAR SYSTEMS [J].
BOILLAT, G ;
RUGGERI, T .
WAVE MOTION, 1979, 1 (02) :149-152
[2]  
Boillat G., 1965, PROPAGATION ONDES
[3]  
Boillat G., 1976, ANN MAT PUR APPL, V111, P31, DOI [10.1007/BF02411808, DOI 10.1007/BF02411808]
[4]  
CHOQUETBRUHAT Y, 1969, J MATH PURE APPL, V48, P117
[5]  
DONATO A, 1987, ATTI SEMIN MAT FIS, V35, P191
[6]  
DREYER W, 1986, ANN I H POINCARE-PHY, V45, P401
[7]   ON STABILITY FOR SYMMETRIC HYPERBOLIC SYSTEMS .1. [J].
ECKHOFF, KS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 40 (01) :94-115
[8]   PROPAGATION OF SOUND IN 5 MONATOMIC GASES [J].
GREENSPAN, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1956, 28 (04) :644-648
[9]  
Jeffrey A., 1976, QUASILINEAR HYPERBOL
[10]  
KREMER GM, 1986, ANN I H POINCARE-PHY, V45, P419