Sharp Lebesgue constants for interpolatory L-splines of a formally self-adjoint differential operator

被引:0
作者
Kim, V. A. [1 ]
机构
[1] Ural Fed Univ, Ekaterinburg, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2011年 / 17卷 / 03期
关键词
L-spline; sharp Lebesgue constants; Lebesgue function; formally self-adjoint differential operator;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lebesgue function is constructed and sharp Lebesgue constants are found for both interpolatory periodic and interpolatory bounded L-splines of a formally self-adjoint differential operator of arbitrary order such that at least one of the roots of its characteristic polynomial is zero.
引用
收藏
页码:169 / 177
页数:9
相关论文
共 9 条
[1]  
Karlin S., 1968, TOTAL POSITIVITY, VI
[2]  
KIM VA, 2010, SIB MAT ZH, V51, P330
[3]  
[Ким Владимир Аркадьевич Kim Vladimir Arkadjevich], 2008, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V84, P59, DOI 10.4213/mzm3865
[4]  
Micchelli Ch., 1976, STUDIES SPLINE FUNCT, P203
[5]  
Richards F. B., 1973, Journal of Approximation Theory, V7, P302, DOI 10.1016/0021-9045(73)90074-9
[6]  
SHARMA A, 1977, MAT ZAMETKI, V21, P161
[7]  
Subbotin Yu.N., 1965, T MAT I STEKLOV, V78, P24
[8]   ON THE LEBESQUE CONSTANTS FOR CARDINAL L-SPLINE INTERPOLATION [J].
TERMORSCHE, HG .
JOURNAL OF APPROXIMATION THEORY, 1985, 45 (03) :232-246
[9]   LEBESGUE CONSTANTS FOR CARDINAL L-SPLINE INTERPOLATION [J].
TZIMBALARIO, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (02) :441-448