NUMERICAL TREATMENT OF NON-INTEGRABLE DYNAMICAL-SYSTEMS

被引:1
作者
KAZANTZIS, PG
机构
[1] Dept. of Astronomy, University of Glasgow
关键词
D O I
10.1007/BF00640533
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic and detailed discussion of the 'gravitational' spring-pendulum problem is given for the first time. A procedure is developed for the numerical treatment of non-integrable dynamical systems which possess certain properties in common with the gravitational problem. The technique is important because, in contrast to previous studies, it discloses completely the structure of two-dimensional periodic motion by examining the stability of the one-dimensional periodic motion. Through the parameters of this stability, points have been predicted from which the one-dimensional motion bifurcates into two-dimensional motion. Consequently, families of two-dimensional periodic solutions emanated from these points are studied. These families constitute the generators of the mesh of all the families of periodic solutions of the problem. © 1979 D. Reidel Publishing Company.
引用
收藏
页码:287 / 316
页数:30
相关论文
共 50 条
  • [31] Quantitative behavior of non-integrable systems. II
    J. Beck
    M. Donders
    Y. Yang
    Acta Mathematica Hungarica, 2020, 162 : 220 - 324
  • [32] Discrete variable method for non-integrable quantum systems
    Lehrst. für Theor. Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
    不详
    不详
    Comput Phys Commun, (480-482):
  • [33] GENERIC HAMILTONIAN DYNAMICAL-SYSTEMS ARE NEITHER INTEGRABLE NOR ERGODIC
    MARKUS, L
    MEYER, KR
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, (144) : 1 - 52
  • [34] DYNAMICS OF SYSTEMS WITH NON-INTEGRABLE RESTRICTIONS .1.
    KOZLOV, VV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (03): : 92 - 100
  • [35] Quantitative behavior of non-integrable systems. II
    Beck, J.
    Donders, M.
    Yang, Y.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 220 - 324
  • [36] QUANTUM-MECHANICS OF CLASSICALLY NON-INTEGRABLE SYSTEMS
    ECKHARDT, B
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 163 (04): : 205 - 297
  • [37] Soliton-like behaviour in non-integrable systems
    Nimiwal, Raghavendra
    Satpathi, Urbashi
    Vasan, Vishal
    Kulkarni, Manas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (42)
  • [38] Quantitative Behavior Of Non-Integrable Systems. IV
    J. Beck
    W. W. L. Chen
    Y. Yang
    Acta Mathematica Hungarica, 2022, 167 : 1 - 160
  • [39] Discrete variable method for non-integrable quantum systems
    Schweizer, W
    Fassbinder, P
    González-Férez, R
    QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, VOL 2: ADVANCED PROBLEMS AND COMPLEX SYSTEMS, 2000, 3 : 301 - 321
  • [40] INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS AND DYNAMICAL-SYSTEMS IN MULTIDIMENSIONS
    CALOGERO, F
    ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 229 - 244