Asymptotics of the Dirichlet problem solution for a ring with quadratic growths on the boundaries

被引:0
作者
Tursunov, D. A. [1 ]
Erkebaev, U. Z. [1 ]
Tursunov, E. A. [2 ]
机构
[1] Osh State Univ, Dept Informat, Ul Lenina 331, Osh 723500, Kyrgyzstan
[2] Osh State Univ, Dept Math Methods Econ, Ul Lenina 331, Osh 723500, Kyrgyzstan
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2016年 / 02期
关键词
asymptotic expansion of solution; bisingular perturbation; Dirichlet problem; Puiseux series; small parameter; method of boundary functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper refers to the asymptotic behavior of the Dirichlet bisingular problem solution for a ring with quadratic growths on the boundaries. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the classical method of boundary functions. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion. An asymptotic expansion of the solution is a series of Puiseux, the basic term of the asymptotic expansion of the solution has a negative fractional degree of the small parameter. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 12 条
[1]   Generalization of the boundary function method for solving boundary-value problems for bisingularly perturbed second-order differential equations [J].
Alymkulov, K. ;
Asylbekov, T. D. ;
Dolbeeva, S. F. .
MATHEMATICAL NOTES, 2013, 94 (3-4) :451-454
[2]   A Boundary Function Method for Solving the Model Lighthill Equation with a Regular Singular Point [J].
Alymkulov, K. ;
Khalmatov, A. A. .
MATHEMATICAL NOTES, 2012, 92 (5-6) :751-755
[3]  
Gilbarg D., 1989, ELLIPTICHESKIE DIFFE
[4]  
Il'in A. M., 1992, TRANSLATIONS MATH MO, V102
[5]  
Il'in A.M., 2009, ASIMPTOTICHESKIE MET
[6]   ASYMPTOTIC EXPANSIONS OF SOLUTIONS TO DIRICHLET PROBLEM FOR ELLIPTIC EQUATION WITH SINGULARITIES [J].
Tursunov, D. A. ;
Erkebaev, U. Z. .
UFA MATHEMATICAL JOURNAL, 2016, 8 (01) :97-107
[7]   ASYMPTOTIC EXPANSION OF THE SOLUTION OF THE DIRICHLET PROBLEM FOR A RING WITH A SINGULARITY ON THE BOUNDARY [J].
Tursunov, D. A. ;
Erkebaev, U. Z. .
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2016, (01) :42-52
[8]  
[Турсунов Д.А. Tursunov D.A.], 2016, [Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika], V8, P52, DOI 10.14529/mmph160207
[9]  
Tursunov DA, 2016, T I MAT MEKH URO RAN, V22, P271
[10]  
Tursunov D. A., 2014, IZV TOMSK POLITEKH, V324, P31