A GAUSSIAN FLUID MODEL

被引:13
作者
DEBICKI, K
ROLSKI, T
机构
[1] Mathematical Institute, University of Wrocław, Wrocław, 50-384
关键词
FLUID MODEL; BUFFER CONTENT; ATM PROTOCOL; LINEAR LOGARITHMIC UPPER BOUND; GAUSS-MARKOV FLUID MODEL; AR-GAUSSIAN FLUID MODEL;
D O I
10.1007/BF01245328
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fluid model with infinite buffer is considered. The total net rate is a stationary Gaussian process with mean -c and covariance function R(t). Let Psi(x) be the probability that in steady state conditions the buffer content exceeds x. Under the condition integral(0)(infinity) t(2) \ R(t) \ dt < infinity we show that Psi admits a logarithmic linear upper bound, i.e. Psi(x) less than or equal to C exp[-gamma x]) o(exp[-gamma x]) and find gamma and C. Special cases are worked out when Ii is as in a Gauss-Markov or AR-Gaussian process.
引用
收藏
页码:433 / 452
页数:20
相关论文
共 22 条
[1]   STOCHASTIC-THEORY OF A DATA-HANDLING SYSTEM WITH MULTIPLE SOURCES [J].
ANICK, D ;
MITRA, D ;
SONDHI, MM .
BELL SYSTEM TECHNICAL JOURNAL, 1982, 61 (08) :1871-1894
[2]  
BEZANDRY PH, 1992, ANN I H POINCARE-PR, V28, P31
[3]   ON THE CENTRAL-LIMIT-THEOREM IN D[0,1] [J].
BLOZNELIS, M ;
PAULAUSKAS, V .
STATISTICS & PROBABILITY LETTERS, 1993, 17 (02) :105-111
[4]  
Borovkov A.A., 1984, ASYMPTOTIC METHODS Q
[5]  
Borovkov AA, 1976, STOCHASTIC PROCESSES, DOI [10.1007/978-1-4612-9866-3, DOI 10.1007/978-1-4612-9866-3]
[6]  
DEBICKI K, 1994, THESIS WROCLAW U MAT
[7]  
GLYNN PW, 1994, STUDIES APPLIED PROB, P131
[8]   CENTRAL LIMIT-THEOREMS IN D[0,1] [J].
HAHN, MG .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 44 (02) :89-101
[9]  
Harrison JM, 1985, BROWNIAN MOTION STOC
[10]  
IGLEHART DL, 1965, J APPL PROBAB, V2, P429