THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM

被引:128
作者
CALVO, MP
SANZSERNA, JM
机构
关键词
SYMPLECTIC INTEGRATION; KEPLER PROBLEM; RUNGE-KUTTA-NYSTROM METHODS;
D O I
10.1137/0914057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors develop and test variable step symplectic Runge-Kutta-Nystrom algorithms for the integration of Hamiltonian systems of ordinary differential equations. Numerical experiments suggest that, for symplectic formulae, moving from constant to variable stepsizes results in a marked decrease in efficiency. On the other hand, symplectic formulae with constant stepsizes may outperform available standard (nonsymplectic) variable-step codes. For the model situation consisting in the long-time integration of the two-body problem, our experimental findings are backed by theoretical analysis.
引用
收藏
页码:936 / 952
页数:17
相关论文
共 22 条
[1]  
ABIA L, 1993, IN PRESS MATH COMPUT
[2]  
Arnold, 2013, MATH METHODS CLASSIC
[3]  
CALVO MP, 1992, BIT, V3, P131
[4]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[5]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[6]  
Dormand JR., 1980, J COMPUT APPL MATH, V6, P19, DOI [10.1016/0771-050X(80)90013-3, DOI 10.1016/0771-050X(80)90013-3]
[7]  
FENG K, 1986, J COMPUT MATH, V4, P279
[8]  
HAIRER E, 1987, SOLVING ORDINARY DIF, V1
[9]  
HERBST BM, 1992, QUAEST MATH, V15, P345
[10]  
Kinoshita H., 1991, CELESTIAL MECH, V50, P59