Filters for geodesy data based on linear and nonlinear diffusion

被引:2
作者
Cunderlik, Robert [1 ]
Kollar, Michal [1 ]
Mikula, Karol [1 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math & Descript Geometry, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
关键词
Data filtering; Nonlinear diffusion equation; Surface finite volume method; GOCE data; Satellite-only mean dynamic topography;
D O I
10.1007/s13137-016-0087-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article deals with filtering of data on closed surfaces by using the linear and nonlinear diffusion equations. The linear diffusion filtering is given by the Laplace-Beltrami operator representing linear diffusion along the surface. For the nonlinear diffusion filtering, we introduce nonlinear diffusion equations with diffusion coefficient depending on surface gradient and/or surface Laplacian of solution. This allows adaptive filtering respecting edges and local extrema in the data. For numerical discretization we develop a surface finite-volume method to approximate the partial differential equations on surfaces like sphere, ellipsoid or the Earth surface. The surfaces are approximated by a polyhedral mesh created by planar triangles representing subdivision of an initial icosahedron or octahedron grids. Numerical experiments illustrate behaviour of the linear and nonlinear diffusion filters on testing data and on real measurements, namely the GOCE satellite observations and the satellite-only mean dynamic topography. They show advantages of the nonlinear filters which, on the contrary to the linear one, preserve important structures in processed geodesy data.
引用
收藏
页码:239 / 274
页数:36
相关论文
共 30 条
  • [1] AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING
    ALVAREZ, L
    GUICHARD, F
    LIONS, PL
    MOREL, JM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) : 199 - 257
  • [2] Alvarez L., 1994, ACTA NUMER, V3, P1, DOI [10.1017/S0962492900002415, DOI 10.1017/S0962492900002415]
  • [3] Andersen O., 2013, IAG SCI ASS POTSD
  • [4] [Anonymous], 1971, ITERATIVE SOLUTION L
  • [5] The new ESA satellite-only gravity field model via the direct approach
    Bruinsma, Sean L.
    Foerste, Christoph
    Abrikosov, Oleg
    Marty, Jean-Charles
    Rio, Marie-Helene
    Mulet, Sandrine
    Bonvalot, Sylvain
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (14) : 3607 - 3612
  • [6] Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis
    Caselles, V
    Morel, JM
    Sapiro, G
    Tannenbaum, A
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (03) : 269 - 273
  • [7] IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION
    CATTE, F
    LIONS, PL
    MOREL, JM
    COLL, T
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) : 182 - 193
  • [8] Crandall M. G., 1992, B AMS, V27, P1, DOI [DOI 10.1090/S0273-0979-1992-00266-5, 10.1090/s0273-0979-1992-00266-5]
  • [9] Cunderlik R., 2015, INT ASS GEODESY S, DOI [10.1007/1345_2015_211, DOI 10.1007/1345_2015_211]
  • [10] Nonlinear diffusion filtering of data on the Earth's surface
    Cunderlik, Robert
    Mikula, Karol
    Tunega, Martin
    [J]. JOURNAL OF GEODESY, 2013, 87 (02) : 143 - 160