MONOMIAL GORENSTEIN IDEALS

被引:9
作者
BRESINSKY, H
机构
[1] University of Maine at Orono, Orono, 04469, Maine
关键词
D O I
10.1007/BF01303625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper concerns itself with generating sets for monomial Gorenstein ideals in polynomial rings k[x1,..., xr], k an arbitrary field. For r=5 it is shown that for a certain class of these ideals, the number of generators is bounded by 13. To establish the sharpness of this bound an algorithm is established, to obtain all numerical symmetric semigroups with a fixed odd integer 2n+1 as last integer unattained. Finally, a short proof of the known fact is given, that for r=4 the number of elements in a generating set is 3 or 5. © 1979 Springer-Verlag.
引用
收藏
页码:159 / 181
页数:23
相关论文
共 11 条
[1]   VALUE SEMIGROUP OF PLANE IRREDUCIBLE ALGEBROID CURVE [J].
ANGERMULLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1977, 153 (03) :267-282
[2]  
APERY R, 1946, CR HEBD ACAD SCI, V222, P1198
[3]   PRIME IDEALS WITH GENERIC ZERO XI=TNI [J].
BRESINSKY, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :329-332
[4]   SEMIGROUPS CORRESPONDING TO ALGEBROID BRANCHES IN PLANE [J].
BRESINSKY, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (02) :381-+
[5]   SYMMETRIC SEMIGROUPS OF INTEGERS GENERATED BY 4 ELEMENTS [J].
BRESINSKY, H .
MANUSCRIPTA MATHEMATICA, 1975, 17 (03) :205-219
[6]  
BRESINSKY H, 1977, HOUSTON J MATH, V3, P453
[7]  
Grauert H., 1971, ANAL STELLENALGEBREN, DOI 10.1007/978-3-642-65033-8
[8]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&
[9]  
HERZOG J, 1971, WERTELHALBGRUPPE EIN
[10]  
KUNZ E, 1974, J ALGEBRA, V28, P111, DOI 10.1016/0021-8693(74)90025-8