THE UNIVERSAL FORM OF THE LITTLEWOOD-RICHARDSON RULE

被引:20
作者
BOFFI, G [1 ]
机构
[1] BRANDEIS UNIV,WALTHAM,MA 02254
关键词
D O I
10.1016/0001-8708(88)90007-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:40 / 63
页数:24
相关论文
共 12 条
[1]   SCHUR FUNCTORS AND SCHUR COMPLEXES [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :207-278
[2]  
BACLAWSKI K, 1980, LECTURE NOTES U CALI
[3]  
BUCHSBAUM DA, 1983, BRANDEIS LECTURE NOT
[4]   YOUNG-DIAGRAMS AND DETERMINANTAL VARIETIES [J].
DECONCINI, C ;
EISENBUD, D ;
PROCESI, C .
INVENTIONES MATHEMATICAE, 1980, 56 (02) :129-165
[5]   CHARACTERISTIC-FREE APPROACH TO REPRESENTATION THEORY OF GN-STAR [J].
JAMES, GD .
JOURNAL OF ALGEBRA, 1977, 46 (02) :430-450
[6]  
Littlewood D.E., 1950, THEORY GROUP CHARACT
[7]   Group characters and algebra [J].
Littlewood, DE ;
Richardson, AR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL OR PHYSICAL CHARACTER, 1934, 233 :99-141
[8]  
Macdonald I., 1998, SYMMETRIC FUNCTIONS
[9]  
NEWELL MJ, 1951, P LOND MATH SOC, V53, P356
[10]  
Robinson GD, 1938, AM J MATH, V60, P745