Using Attenuation Coefficient Generating Function in Parallel Execution of Neural Networks for Solving SAT

被引:1
作者
Zhang, Kairong [1 ]
Nagamatu, Masahiro [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, Wakamatsu Ku, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
关键词
satisfiability problem; parallel execution; neural network; Lagrangian method;
D O I
10.20965/jaciii.2005.p0121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The satisfiability problem (SAT) is one of the most basic and important problems in computer science. We have proposed a recurrent analog neural network called Lagrange Programming neural network with Polarized High-order connections (LPPH) for the SAT, together with a method of parallel execution of LPPH. Experimental results demonstrate a high speedup ratio. Furthermore this method is very easy to realize by hardware. LPPH dynamics has an important parameter, the attenuation coefficient, known to strongly affect LPPH execution speed, but determining a good value of attenuation coefficient is difficult. Experimental results show that the parallel execution reduces this difficulty. In this paper we propose a method to assign different values of attenuation coefficients to LPPHs used in the parallel execution. The values are generated uniformly randomly or randomly using a probability density function.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 7 条