On Ricci flat warped products with a quarter-symmetric connection

被引:6
|
作者
Pahan, Sampa [1 ]
Pal, Buddhadev [2 ]
Bhattacharyya, Arindam [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Univ Calcutta, Dept Pure Math, Kolkata 700019, India
关键词
Einstein manifold; quarter-symmetric connection; multiply warped product; warping function;
D O I
10.1007/s00022-015-0301-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we have computed the warping functions for a Ricci flat Einstein multiply warped product spaces M with a quarter-symmetric connection for different dimensions of M [i.e; (1). dim M = 2, (2). dimM = 3, (3). dimM >= 4] and all the fibers are Ricci flat.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [31] A Result of Rigidity for Ricci-Flat Warped Products
    Menezes, Ilton
    Correia, Paula
    Pina, Romildo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [32] Ricci-flat warped products and Painleve analysis
    Dancer, A
    Wang, MY
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) : 3609 - 3614
  • [33] LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION
    Jin, Dab Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 201 - 213
  • [34] A Result of Rigidity for Ricci-Flat Warped Products
    Ilton Menezes
    Paula Correia
    Romildo Pina
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [35] On Quarter-Symmetric Metric Connection in a Lorentzian Para-Sasakian Manifold
    Venkatesha
    Kumar, K. T. P.
    Bagewadi, C. S.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2015, 5 (01): : 3 - 12
  • [36] On weak symmetries of Kenmotsu Manifolds with respect to quarter-symmetric metric connection
    Prakasha, D. G.
    Vikas, K.
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 79 - 90
  • [37] Basic inequalities for submanifolds of quaternionic space forms with a quarter-symmetric connection
    Lone, Mehraj Ahmad
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 159
  • [38] Geometries of a manifold with a symmetric-type quarter-symmetric non-metric connection
    Zhao, Di
    Ho, Talyun
    Jon, Cholyong
    FILOMAT, 2024, 38 (13) : 4553 - 4567
  • [39] A Study on the φ-Symmetric K-Contact Manifold Admitting Quarter-Symmetric Metric Connection
    Bagewadi, C. S.
    Ingalahalli, Gurupadavva
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2014, 10 (04) : 399 - 411
  • [40] Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold
    Zlatanovic, Milan Lj.
    Maksimovic, Miroslav D.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (04): : 963 - 980