Jackson Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions

被引:0
作者
Shabozov, M. Sh
Tukhliev, K.
机构
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2015年 / 21卷 / 04期
关键词
best approximation; Chebyshev polynomials; generalized modulus of continuity of mth order; Chebyshev-Fourier coefficients; n-widths;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Hilbert space L-2,L-mu[-1, 1] with Chebyshev weight mu(x) := 1/root 1- x(2), we obtain Jackson - Stechkin type inequalities between the value En-1(f)L-2,L-mu of the best approximation of a function f(x) by algebraic polynomials of degree at most n - 1 and the mth-order generalized modulus of continuity Omega(m) (D(r)f; t), where D is some second-order differential operator. For classes of functions W-p,m((2r)) (Psi) (m, r is an element of N, 1/(2r) < p <= 2) defined by the mentioned modulus of continuity and a given majorant Psi(t) (t >= 0), which satisfies certain constraints, we calculate the values of various n-widths in the space L-2,L-mu[-1, 1].
引用
收藏
页码:292 / 308
页数:17
相关论文
共 29 条
[1]  
ABILOV VA, 2002, ZH VYCH MAT MAT FIZ, V42, P451
[2]  
ARESTOV VV, 1996, USP MAT NAUK, V51, P89
[3]   THE EXACT CONSTANT IN THE JACKSON INEQUALITY IN L-2 [J].
BABENKO, AG .
MATHEMATICAL NOTES, 1986, 39 (5-6) :355-363
[4]   The Jackson-Stechkin inequality in L2 with trigonometric modulus of continuity [J].
Babenko, AG ;
Chernykh, NI ;
Shevaldin, VT .
MATHEMATICAL NOTES, 1999, 65 (5-6) :777-781
[5]  
BABENKO AG, 1998, IZV RAN SERIYA MATEM, V62, P27
[6]  
BABENKO VF, 2003, NERAVENSTVA DLYA PRO
[7]  
CHERNYKH N. I., 1967, MAT ZAMETKI, V20, P513
[8]  
Chertova D. V., 2009, IZV TULSK GOS U ESTE, V0, P5
[9]   Widths of classes from L2[0,2π] and minimization of exact constants in Jackson-type inequalities [J].
Esmaganbetov, MG .
MATHEMATICAL NOTES, 1999, 65 (5-6) :689-693
[10]  
Ivanov AV, 2010, T I MAT MEKH URO RAN, V16, P180